172x Filetype PDF File size 1.26 MB Source: web.northeastern.edu
❈❛❧❝✉❧✉s ■■■ ✭♣❛rt ✶✮✿ ❱❡❝t♦rs ❛♥❞ ✸✲❉✐♠❡♥s✐♦♥❛❧ ●❡♦♠❡tr② ✭❜② ❊✈❛♥ ❉✉♠♠✐t✱ ✷✵✷✶✱ ✈✳ ✹✳✵✵✮ ❈♦♥t❡♥ts ✶ ❱❡❝t♦rs ❛♥❞ ✸✲❉✐♠❡♥s✐♦♥❛❧ ●❡♦♠❡tr② ✶ ✶✳✶ ❋✉♥❝t✐♦♥s ♦❢ ❙❡✈❡r❛❧ ❱❛r✐❛❜❧❡s ❛♥❞ ✸✲❙♣❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ✶✳✶✳✶ ●r❛♣❤✐♥❣ ❋✉♥❝t✐♦♥s ♦❢ ✷ ❱❛r✐❛❜❧❡s✿ ❙✉r❢❛❝❡s ❛♥❞ ▲❡✈❡❧ ❙❡ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✶✳✶✳✷ ●r❛♣❤✐♥❣ ❋✉♥❝t✐♦♥s ♦❢ ✸ ❱❛r✐❛❜❧❡s✿ ▲❡✈❡❧ ❙✉r❢❛❝❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✶✳✷ ❱❡❝t♦rs✱ ❉♦t ❛♥❞ ❈r♦ss Pr♦❞✉❝ts✱ ▲✐♥❡s ❛♥❞ P❧❛♥❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✷✳✶ ❱❡❝t♦rs ❛♥❞ ❱❡❝t♦r ❖♣❡r❛t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✶✳✷✳✷ ❚❤❡ ❉♦t Pr♦❞✉❝t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✷✳✸ ❚❤❡ ❈r♦ss Pr♦❞✉❝t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✶✳✷✳✹ ▲✐♥❡s ❛♥❞ P❧❛♥❡s ✐♥ ✸✲❙♣❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✶✳✸ ❱❡❝t♦r✲❱❛❧✉❡❞ ❋✉♥❝t✐♦♥s✱ ❈✉r✈❡s ❛♥❞ ▼♦t✐♦♥ ✐♥ ✸✲❙♣❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✶✳✸✳✶ ❱❡❝t♦r✲❱❛❧✉❡❞ ❋✉♥❝t✐♦♥s ❛♥❞ ❈✉r✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✶✳✸✳✷ ▼♦t✐♦♥ ✐♥ ✸✲❙♣❛❝❡✿ ❱❡❧♦❝✐t② ❛♥❞ ❆❝❝❡❧❡r❛t✐♦♥❀ ❆r❝❧❡♥❣t❤❀ ❯♥✐t ❚❛♥❣❡♥t✱ ◆♦r♠❛❧✱ ❛♥❞ ❇✐♥♦r✲ ♠❛❧ ❱❡❝t♦rs❀ ❈✉r✈❛t✉r❡ ❛♥❞ ❚♦rs✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✶ ❱❡❝t♦rs ❛♥❞ ✸✲❉✐♠❡♥s✐♦♥❛❧ ●❡♦♠❡tr② ❋r♦♠ ♦♥❡✲✈❛r✐❛❜❧❡ ❝❛❧❝✉❧✉s✱ ✇❡ ❛r❡ ✈❡r② ✉s❡❞ t♦ ✷✲❞✐♠❡♥s✐♦♥❛❧ ✏♣❧❛♥❛r✑ ❣❡♦♠❡tr②✿ ❣✐✈❡♥ ❛ ❢✉♥❝t✐♦♥ f(x)✱ ✇❡ ❦♥♦✇ ❤♦✇ t♦ ♣r♦❞✉❝❡ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❝✉r✈❡ y = f(x) ❛♥❞ ✉s❡ ❝❛❧❝✉❧✉s t♦ ✐❞❡♥t✐❢② s♦♠❡ ♦❢ ✐ts ✐♠♣♦rt❛♥t ❢❡❛t✉r❡s s✉❝❤ ❛s ❧♦❝❛❧ ♠✐♥✐♠❛ ❛♥❞ ♠❛①✐♠❛✳ ❲❡ ❛❧s♦ ❦♥♦✇ ❤♦✇ t♦ ❣r❛♣❤ ♣❛r❛♠❡tr✐❝❛❧❧②✲❞❡✜♥❡❞ ❢✉♥❝t✐♦♥s s✉❝❤ ❛s t❤❡ ❝②❝❧♦✐❞ x = t+sin(t)✱ y = 1+cos(t)✳ ❆♥❞ ✇❡ ❡✈❡♥ ❦♥♦✇✱ ♠♦r❡ ♦r ❧❡ss✱ ❤♦✇ t♦ ❣r❛♣❤ ✐♠♣❧✐❝✐t❧②✲❞❡✜♥❡❞ ❢✉♥❝t✐♦♥s✱ ❧✐❦❡ t❤❡ ❝✐r❝❧❡ x2 + y2 = 1✳ ■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✐♥tr♦❞✉❝❡ ✸✲❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡ ✭♦❢t❡♥ ❝❛❧❧❡❞ ✸✲s♣❛❝❡ ❢♦r s❤♦rt✮ ❛♥❞ st✉❞② t❤❡ ❣❡♦♠❡tr② ♦❢ ❧✐♥❡s ❛♥❞ ♣❧❛♥❡s✱ ❛s ✇❡❧❧ ❛s ♠♦r❡ ❣❡♥❡r❛❧ ❝✉r✈❡s ❛♥❞ s✉r❢❛❝❡s✱ ✉s✐♥❣ ❢✉♥❝t✐♦♥s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s✳ ❆❧♦♥❣ t❤❡ ✇❛②✱ ✇❡ ✇✐❧❧ ✐♥tr♦❞✉❝❡ ❛♥❞ st✉❞② ✈❡❝t♦rs✱ ✇❤✐❝❤ ✇✐❧❧ ❤❡❧♣ t♦ ❝❧❛r✐❢② ❛ ❣r❡❛t ❞❡❛❧ ♦❢ t❤❡ ❝♦♥❝❡♣ts✳ ✶✳✶ ❋✉♥❝t✐♦♥s ♦❢ ❙❡✈❡r❛❧ ❱❛r✐❛❜❧❡s ❛♥❞ ✸✲❙♣❛❝❡ • ❆ ❢✉♥❝t✐♦♥ ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ✐s✱ ❛s t❤❡ ♥❛♠❡ ✐♥❞✐❝❛t❡s✱ ❛ ❢✉♥❝t✐♦♥ t❤❛t t❛❦❡s ✐♥ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ❛♥❞ ♦✉t♣✉ts ❛ ✈❛❧✉❡ ❛ss♦❝✐❛t❡❞ t♦ t❤❡ ✐♥♣✉ts✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❢✉♥❝t✐♦♥ f(x,y) = x+y t❛❦❡s ✐♥ t✇♦ ✈❛❧✉❡s x ❛♥❞ y ❛♥❞ ♦✉t♣✉ts t❤❡✐r s✉♠ x+y✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❢✉♥❝t✐♦♥ g(x,y,z) = xyz2 t❛❦❡s ✐♥ t❤r❡❡ ✈❛❧✉❡s x✱ y✱ ❛♥❞ z✱ ❛♥❞ ♦✉t♣✉ts t❤❡ ♣r♦❞✉❝t xyz2✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❢✉♥❝t✐♦♥ d(l,w) = √l2 +w2 ❣✐✈❡s t❤❡ ❧❡♥❣t❤ ♦❢ ❛ ❞✐❛❣♦♥❛❧ ♦❢ ❛ r❡❝t❛♥❣❧❡ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ r❡❝t❛♥❣❧❡✬s ❧❡♥❣t❤ l ❛♥❞ ✐ts ✇✐❞t❤ w✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❢✉♥❝t✐♦♥ V(r,h) = 1πr2h ❣✐✈❡s t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ ✭r✐❣❤t ❝✐r❝✉❧❛r✮ ❝♦♥❡ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ✐ts 3 ❜❛s❡ r❛❞✐✉s r ❛♥❞ ✐ts ❤❡✐❣❤t h✳ ✶ • ❆s ✇✐t❤ ❢✉♥❝t✐♦♥s ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡✱ ❛ ❢✉♥❝t✐♦♥ ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ❤❛s ❛ ❞♦♠❛✐♥ ❛♥❞ ❛ r❛♥❣❡✿ t❤❡ ❞♦♠❛✐♥ ✐s t❤❡ s❡t ♦❢ ✐♥♣✉t ✈❛❧✉❡s ❛♥❞ t❤❡ r❛♥❣❡ ✐s t❤❡ s❡t ♦❢ ♦✉t♣✉t ✈❛❧✉❡s✳ ◦ ❋♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s f(x,y)✱ t❤❡ ❞♦♠❛✐♥ ✐s ♥♦✇ ❛ s✉❜s❡t ♦❢ t❤❡ ✷✲❞✐♠❡♥s✐♦♥❛❧ ♣❧❛♥❡ r❛t❤❡r t❤❛♥ ❛ s✉❜s❡t ♦❢ t❤❡ r❡❛❧ ❧✐♥❡✳ ❇❡❝❛✉s❡ ♦❢ t❤✐s✱ ❞♦♠❛✐♥s ♦❢ ❢✉♥❝t✐♦♥s ♦❢ ♠♦r❡ t❤❛♥ ♦♥❡ ✈❛r✐❛❜❧❡ ❝❛♥ ❜❡ r❛t❤❡r ❝♦♠♣❧✐❝❛t❡❞✳ ◦ ■♥ ❣❡♥❡r❛❧✱ ✉♥❧❡ss s♣❡❝✐✜❡❞✱ t❤❡ ❞♦♠❛✐♥ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s t❤❡ ❧❛r❣❡st ♣♦ss✐❜❧❡ s❡t ♦❢ ✐♥♣✉ts ❢♦r ✇❤✐❝❤ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ♠❛❦❡s s❡♥s❡✳ ❲❡ ❣❡♥❡r❛❧❧② ❛❞♦♣t t❤❡ ❝♦♥✈❡♥t✐♦♥s t❤❛t sq✉❛r❡ r♦♦ts ♦❢ ♥❡❣❛t✐✈❡ r❡❛❧ ♥✉♠❜❡rs ❛r❡ ♥♦t ❛❧❧♦✇❡❞✱ ♥♦r ✐s ❞✐✈✐s✐♦♥ ❜② ③❡r♦✳ √ √ ◦ ❊①❛♠♣❧❡✿ ❋♦r f(x,y) = x + y✱ t❤❡ ❞♦♠❛✐♥ ✐s t❤❡ ✜rst q✉❛❞r❛♥t ♦❢ t❤❡ xy✲♣❧❛♥❡✱ ❞❡✜♥❡❞ ❜② t❤❡ ✐♥❡q✉❛❧✐t✐❡s x ≥ 0 ❛♥❞ y ≥ 0✳ p 2 2 ◦ ❊①❛♠♣❧❡✿ ❋♦r f(x,y) = x +y −1✱ t❤❡ ❞♦♠❛✐♥ ✐s t❤❡ s❡t ♦❢ ♣♦✐♥ts ✐♥ t❤❡ xy✲♣❧❛♥❡ ✇❤✐❝❤ s❛t✐s❢② x2+y2 ≥1✿ t❤✐s ❞❡s❝r✐❜❡s ❛❧❧ t❤❡ ♣♦✐♥ts ♦❢ t❤❡ ♣❧❛♥❡ ❡①❝❡♣t ❢♦r t❤♦s❡ ❧②✐♥❣ str✐❝t❧② ✐♥s✐❞❡ t❤❡ ✉♥✐t ❝✐r❝❧❡✳ ◦ ❊①❛♠♣❧❡✿ ❋♦r f(x,y) = 1 ✱ t❤❡ ❞♦♠❛✐♥ ✐s t❤❡ s❡t ♦❢ ♣♦✐♥ts ✐♥ t❤❡ xy✲♣❧❛♥❡ ✇❤✐❝❤ s❛t✐s❢② x − y 6= 0✿ x−y t❤✐s ❞❡s❝r✐❜❡s ❛❧❧ ♣♦✐♥ts ✐♥ t❤❡ ♣❧❛♥❡ ❡①❝❡♣t t❤♦s❡ ♦♥ t❤❡ ❧✐♥❡ y = x✳ • P♦✐♥ts ✐♥ ✸✲s♣❛❝❡ ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② ❛ tr✐♣❧❡t ♦❢ ♥✉♠❜❡rs (x,y,z)✳ ❚❤❡ ♥❡✇ ❝♦♦r❞✐♥❛t❡ z r❡♣r❡s❡♥ts ❤❡✐❣❤t ❛❜♦✈❡ t❤❡ xy✲♣❧❛♥❡✳ ◦ ❋r♦♠ ❛♥ ❛❧❣❡❜r❛✐❝ st❛♥❞♣♦✐♥t✱ ✸✲s♣❛❝❡ ❜❡❤❛✈❡s q✉✐t❡ s✐♠✐❧❛r❧② t♦ ✷✲❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡✳ ◦ ❋♦r ❡①❛♠♣❧❡✱ ✐♥ ✸✲s♣❛❝❡✱ ✇❡ ❝❛♥ ♠❡❛s✉r❡ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ ❛♥② t✇♦ ♣♦✐♥ts✳ ❇② ❛ s✉✐t❛❜❧❡ ♣❛✐r ♦❢ ❛♣♣❧✐❝❛t✐♦♥s ♦❢ t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠✱ ✇❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❛t t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ ♣♦✐♥ts (x ,y ,z ) p 1 1 1 ❛♥❞ (x ,y ,z ) ✐s ❣✐✈❡♥ ❜② (x −x )2+(y −y )2+(z −z )2✳ 2 2 2 1 2 1 2 1 2 ✶✳✶✳✶ ●r❛♣❤✐♥❣ ❋✉♥❝t✐♦♥s ♦❢ ✷ ❱❛r✐❛❜❧❡s✿ ❙✉r❢❛❝❡s ❛♥❞ ▲❡✈❡❧ ❙❡ts • ❚❤❡r❡ ❛r❡ t✇♦ ♣r✐♠❛r② ✇❛②s t♦ ✈✐s✉❛❧✐③❡ ❛ ❢✉♥❝t✐♦♥ f(x,y) ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳ • ❚❤❡ ✜rst ✇❛② ✐s t♦ ♣❧♦t t❤❡ ♣♦✐♥ts (x,y,z) ✐♥ ✸✲❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡ s❛t✐s❢②✐♥❣ z = f(x,y)✳ ◦ ❆t t❤❡ ♣♦✐♥t (x,y) ✐♥ t❤❡ ♣❧❛♥❡✱ t❤❡ ❣r❛♣❤ ❤❛s t❤❡ ❤❡✐❣❤t z = f(x,y)❀ s♦ ✇❡ s❡❡ t❤❛t ❛s (x,y) ✈❛r✐❡s t❤r♦✉❣❤ t❤❡ ♣❧❛♥❡✱ t❤❡ ❢✉♥❝t✐♦♥ z = f(x,y) ✇✐❧❧ tr❛❝❡ ♦✉t ❛ s✉r❢❛❝❡✱ ❝❛❧❧❡❞ t❤❡ ❣r❛♣❤ ♦❢ f(x,y)✳ • ❙♦♠❡ ❡①❛♠♣❧❡ ♦❢ s✐♠♣❧❡ ❣r❛♣❤s z = f(x,y) ❛r❡ ❣✐✈❡♥ ❜❡❧♦✇✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = 0 ✐s t❤❡ xy✲♣❧❛♥❡✳ ◦ ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = x+y ✐s ❛ t✐❧t❡❞ ♣❧❛♥❡✳ ▼♦r❡ ❣❡♥❡r❛❧❧②✱ ❛♥ ❡q✉❛t✐♦♥ ♦❢ t❤❡ ❢♦r♠ ax+by+cz = d ❢♦r ❝♦♥st❛♥ts a,b,c,d ✭✇✐t❤ ♥♦t ❛❧❧ ♦❢ a,b,c ③❡r♦✮ ✇✐❧❧ ❣✐✈❡ ❛ ♣❧❛♥❡✱ ❛s ✇❡ ✇✐❧❧ ❞✐s❝✉ss ❧❛t❡r✳ • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = x2 +y2 ✐s ❛ ♣❛r❛❜♦❧♦✐❞ ✭✐✳❡✳✱ ❛ ♣❛r❛❜♦❧✐❝ ❞✐s❤✮✳ • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = px2 +y2 ✐s ❛ r✐❣❤t ❝✐r❝✉❧❛r ❝♦♥❡ ♦♣❡♥✐♥❣ ✉♣✇❛r❞✱ ✇✐t❤ ✈❡rt❡① ❛t t❤❡ ♦r✐❣✐♥✳ ✷ 2 2 • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ ♦❢ z = x −y ✐s ❛ ❤②♣❡r❜♦❧✐❝ ♣❛r❛❜♦❧♦✐❞✱ ❛❧s♦ ❝❛❧❧❡❞ ❛ s❛❞❞❧❡ s✉r❢❛❝❡✳ • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = x2 ✐s ❛ ♣❛r❛❜♦❧✐❝ ❝②❧✐♥❞❡r✳ • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = x3−3xy2 ✐s s♦♠❡t✐♠❡s ❝❛❧❧❡❞ t❤❡ ✏♠♦♥❦❡② s❛❞❞❧❡✑✱ ❛s ✐t ❤❛s t❤r❡❡ ❞❡♣r❡ss✐♦♥s r❛t❤❡r t❤❛♥ t❤❡ t✇♦ ❢♦r t❤❡ r❡❣✉❧❛r s❛❞❞❧❡ ✭♦♥❡ ❢♦r ❡❛❝❤ ❧❡❣✱ ❛♥❞ ♦♥❡ ❢♦r t❤❡ t❛✐❧✮✳ √ 2 2 p 3− x +y /12 2 2 • ❊①❛♠♣❧❡✿ ❚❤❡ ❣r❛♣❤ z = e cos x +y ♣r♦❞✉❝❡s ❛ s✉r❢❛❝❡ t❤❛t ❧♦♦❦s ❧✐❦❡ r✐♣♣❧❡s ✐♥ ❛ ♣♦♦❧ ♦❢ ✇❛t❡r✳ • ❚❤❡ s❡❝♦♥❞ ✇❛② t♦ ✈✐s✉❛❧✐③❡ ❛ ❢✉♥❝t✐♦♥ f(x,y) ✐s t♦ ♣❧♦t t❤❡ ♣♦✐♥ts (x,y) ✐♥ t❤❡ ♣❧❛♥❡ ♦♥ t❤❡ ❧❡✈❡❧ s❡ts f(x,y) = c ❢♦r ♣❛rt✐❝✉❧❛r ✈❛❧✉❡s ♦❢ c✱ ❛s ✐♠♣❧✐❝✐t ❝✉r✈❡s✳ ◦ ❋♦r ❛ ❣✐✈❡♥ ❢✉♥❝t✐♦♥ f(x,y) ❛♥❞ ❛ ♣❛rt✐❝✉❧❛r ✈❛❧✉❡ ♦❢ c✱ t❤❡ ♣♦✐♥ts (x,y) s❛t✐s❢②✐♥❣ f(x,y) = c ❛r❡ ❝❛❧❧❡❞ ❛ ❧❡✈❡❧ s❡t ♦❢ f✳ ◦ ❋♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s t❤❡s❡ s❡ts ✇✐❧❧ ❣❡♥❡r❛❧❧② ❜❡ ❝✉r✈❡s✱ s♦ t❤❡② ❛r❡ ❛❧s♦ s♦♠❡t✐♠❡s ❝❛❧❧❡❞ ❧❡✈❡❧ ❝✉r✈❡s✳ ◦ ▲❡✈❡❧ s❡ts ❛r❡ ♦❜t❛✐♥❡❞ ❜② ✐♥t❡rs❡❝t✐♥❣ t❤❡ ❤♦r✐③♦♥t❛❧ ♣❧❛♥❡ z = c ✇✐t❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ s✉r❢❛❝❡ z = f(x,y)✳ ◦ ■❢ ✇❡ ❣r❛♣❤ ♠❛♥② ♦❢ t❤❡s❡ ❧❡✈❡❧ ❝✉r✈❡s t♦❣❡t❤❡r ♦♥ t❤❡ s❛♠❡ ❛①❡s✱ ✇❡ ✇✐❧❧ ♦❜t❛✐♥ ❛ ✏t♦♣♦❣r❛♣❤✐❝❛❧ ♠❛♣✑ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f(x,y)✳ 2 2 • ❊①❛♠♣❧❡✿ ❚❤❡ ❧❡✈❡❧ s❡ts ❢♦r t❤❡ ❢✉♥❝t✐♦♥ f(x,y) = x +y ❛r❡ ❝✐r❝❧❡s ✐♥ t❤❡ ♣❧❛♥❡✳ 2 2 √ ◦ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ t❤❡ ❧❡✈❡❧ s❡t x + y = c ✭❢♦r c > 0✮ ✐s ❛ ❝✐r❝❧❡ ✇✐t❤ r❛❞✐✉s c ❝❡♥t❡r❡❞ ❛t (0,0)✳ ◦ ❋♦r c = 0 t❤❡ ❧❡✈❡❧ s❡t ✐s ❥✉st t❤❡ s✐♥❣❧❡ ♣♦✐♥t (0,0)✱ ❛♥❞ ❢♦r c < 0 t❤❡ ❧❡✈❡❧ s❡ts ❞♦ ♥♦t ❝♦♥t❛✐♥ ❛♥② ♣♦✐♥ts ❛t ❛❧❧✳ ◦ ❇❡❧♦✇ ♦♥ t❤❡ ❧❡❢t ❛r❡ ♣❧♦tt❡❞ t❤❡ ❧❡✈❡❧ ❝✉r✈❡s ✐♥ t❤❡ ♣❧❛♥❡ ❢♦r c = 1,2,3,...,9✱ ✇❤✐❧❡ ♦♥ t❤❡ r✐❣❤t t❤❡ ❧❡✈❡❧ s❡ts ❤❛✈❡ ❜❡❡♥ ❞r❛✇♥ ♦♥ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ s✉r❢❛❝❡ z = f(x,y) ✐ts❡❧❢✱ t♦ ✐❧❧✉str❛t❡ ❤♦✇ t❤❡ ❧❡✈❡❧ ❝✉r✈❡s ❛r✐s❡ ❜② ✐♥t❡rs❡❝t✐♥❣ t❤❡ s✉r❢❛❝❡ z = f(x,y) ✇✐t❤ t❤❡ ✈❛r✐♦✉s ❤♦r✐③♦♥t❛❧ ♣❧❛♥❡s✳ ✸ 2 2 • ❊①❛♠♣❧❡✿ ❚❤❡ ❧❡✈❡❧ s❡ts ❢♦r t❤❡ ❢✉♥❝t✐♦♥ f(x,y) = x −y ❛r❡ ❤②♣❡r❜♦❧❛s✳ ◦ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ t❤❡ ❧❡✈❡❧ s❡t x2 − y2 = c ✭❢♦r c 6= 0✮ ❛r❡ ❤②♣❡r❜♦❧❛s ✭❡❛❝❤ ♦♥❡ ❝♦♥s✐sts ♦❢ t✇♦ ♣✐❡❝❡s✮✱ ✇❤✐❧❡ ❢♦r c = 0 t❤❡ ❧❡✈❡❧ s❡t ✐s t❤❡ ✉♥✐♦♥ ♦❢ t❤❡ t✇♦ ❧✐♥❡s y = x ❛♥❞ y = −x✳ ◦ ❇❡❧♦✇ ♦♥ t❤❡ ❧❡❢t ❛r❡ ♣❧♦tt❡❞ t❤❡ ❧❡✈❡❧ ❝✉r✈❡s ✐♥ t❤❡ ♣❧❛♥❡ ❢♦r c = −5,−4,−3,...,4,5✱ ✇❤✐❧❡ ♦♥ t❤❡ r✐❣❤t t❤❡ ❧❡✈❡❧ s❡ts ❤❛✈❡ ❜❡❡♥ ❞r❛✇♥ ♦♥ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ s✉r❢❛❝❡ z = f(x,y) ✐ts❡❧❢✳ ◦ ❆s✇❡♥♦t❡❞❡❛r❧✐❡r✱ t❤❡ ❣r❛♣❤ ♦❢ z = x2−y2 ✐s ❝❛❧❧❡❞ ❛ ❤②♣❡r❜♦❧✐❝ ♣❛r❛❜♦❧♦✐❞✿ ✐t ❤❛s t❤✐s ♥❛♠❡ ❜❡❝❛✉s❡ ✐ts ❤♦r✐③♦♥t❛❧ ❝r♦ss✲s❡❝t✐♦♥s ✭❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤❡ ❧❡✈❡❧ s❡ts✮ ❛r❡ ❤②♣❡r❜♦❧❛s ✇❤✐❧❡ ✐ts ✈❡rt✐❝❛❧ ❝r♦ss✲s❡❝t✐♦♥s ❛r❡ ♣❛r❛❜♦❧❛s✳ 2 2 2 2 2 −x −y • ❊①❛♠♣❧❡✿ ❇❡❧♦✇❛r❡♣❧♦tt❡❞t❤❡❧❡✈❡❧❝✉r✈❡s❢♦rt❤❡❢✉♥❝t✐♦♥f(x,y) = (x −y ) e ❢♦r c = 0.04,0.14,...0.54✱ ❛❧♦♥❣ ✇✐t❤ t❤❡ ✸✲❞✐♠❡♥s✐♦♥❛❧ ♣❧♦t ♦❢ z = f(x,y)✿ ✹
no reviews yet
Please Login to review.