jagomart
digital resources
picture1_Ensemble Methods In Machine Learning Pdf 89551 | Lecture Ensemble1


 225x       Filetype PDF       File size 3.18 MB       Source: www.cs.toronto.edu


File: Ensemble Methods In Machine Learning Pdf 89551 | Lecture Ensemble1
csc411 fall 2014 machine learning data mining ensemble methods slides by rich zemel ensemble methods typical application classi ication ensemble of classi iers is a set of classi iers whose ...

icon picture PDF Filetype PDF | Posted on 15 Sep 2022 | 3 years ago
Partial capture of text on file.
            CSC411            Fall  2014  
         Machine  Learning  &  Data  Mining  
           Ensemble  Methods	

            Slides  by  Rich  Zemel	

                                       Ensemble	
  methods	
  
          Typical	
  application:	
  classi.ication	
  
          Ensemble	
  of	
  classi.iers	
  is	
  a	
  set	
  of	
  classi.iers	
  whose	
  individual	
  
             decisions	
  combined	
  in	
  some	
  way	
  to	
  classify	
  new	
  examples	
  
          Simplest	
  approach:	
  
               1.   Generate	
  multiple	
  classi.iers	
  
               2.   Each	
  votes	
  on	
  test	
  instance	
  
               3.   Take	
  majority	
  as	
  classi.ication	
  
          Classi.iers	
  different	
  due	
  to	
  different	
  sampling	
  of	
  training	
  data,	
  or	
  
               randomized	
  parameters	
  within	
  the	
  classi.ication	
  algorithm	
  
          Aim:	
  take	
  simple	
  mediocre	
  algorithm	
  and	
  transform	
  it	
  into	
  a	
  super	
  
             classi.ier	
  without	
  requiring	
  any	
  fancy	
  new	
  algorithm	
  
                             Ensemble	
  methods:	
  Summary	
  
          Differ	
  in	
  training	
  strategy,	
  and	
  combination	
  method	
  
          1.   Parallel	
  training	
  with	
  different	
  training	
  sets:	
  bagging	
  	
  
          2.   Sequential	
  training,	
  iteratively	
  re-­‐weighting	
  training	
  
               examples	
  so	
  current	
  classi.ier	
  focuses	
  on	
  hard	
  examples:	
  
               boosting	
  
          3.   Parallel	
  training	
  with	
  objective	
  encouraging	
  division	
  of	
  labor:	
  
               mixture	
  of	
  experts	
  
          Notes:	
  
          •    Also	
  known	
  as	
  meta-­‐learning	
  
          •    Typically	
  applied	
  to	
  weak	
  models,	
  such	
  as	
  decision	
  stumps	
  
               (single-­‐node	
  decision	
  trees),	
  or	
  linear	
  classi.iers	
  
                                   Variance-­‐bias	
  tradeoff?	
  
          Minimize	
  two	
  sets	
  of	
  errors:	
  
          1.   Variance:	
  error	
  from	
  sensitivity	
  to	
  small	
  .luctuations	
  in	
  the	
  
               training	
  set	
  
          2.   Bias:	
  erroneous	
  assumptions	
  in	
  the	
  model	
  
          Variance-­‐bias	
  decomposition	
  is	
  a	
  way	
  of	
  analyzing	
  the	
  
               generalization	
  error	
  as	
  a	
  sum	
  of	
  3	
  terms:	
  variance,	
  bias	
  and	
  
               irreducible	
  error	
  (resulting	
  from	
  the	
  problem	
  itself)	
  
The words contained in this file might help you see if this file matches what you are looking for:

...Csc fall machine learning data mining ensemble methods slides by rich zemel typical application classi ication of iers is a set whose individual decisions combined in some way to classify new examples simplest approach generate multiple each votes on test instance take majority as different due sampling training or randomized parameters within the algorithm aim simple mediocre and transform it into super ier without requiring any fancy summary differ strategy combination method parallel with sets bagging sequential iteratively re weighting so current focuses hard boosting objective encouraging division labor mixture experts notes also known meta typically applied weak models such decision stumps single node trees linear variance bias tradeo minimize two errors error from sensitivity small luctuations erroneous assumptions model decomposition analyzing generalization sum terms irreducible resulting problem itself...

no reviews yet
Please Login to review.