155x Filetype PDF File size 0.14 MB Source: web.math.ucsb.edu
Practice Problems: Trig Substitution Written by Victoria Kala vtkala@math.ucsb.edu November 9, 2014 The following are solutions to the Trig Substitution practice problems posted on November 9. R √ 1 −1 1. Use trig substitution to show that 2 dx = sin x+C 1−x Solution: Let x = sinθ, then dx = cosθ: Z √ 1 Z p 1 Z cosθ Z −1 2dx = 2 · cosθdθ = cosθdθ = dθ = θ +C = sin x+C 1−x 1−sin θ R 1 −1 2. Use trig substitution to show that 1+x2dx = tan x+C 2 Solution: Let x = tanθ, then dx = sec xdx: Z 1 Z 1 2 Z sec2θ Z −1 1+x2dx= 1+tan2θ ·sec θdθ = sec2 θdθ = dθ = θ +C = tan x+C 3. Z √1 dx 2 2 x x +4 2 Solution: Let x = 2tanθ, then dx = 2sec θdθ: Z Z Z 2 √1 √1 2 2sec θ 2 2 dx = 2 2 · 2 sec θdθ = 2 dθ x x +4 4tan θ 4tan θ+4 4tan θ·2secθ =Z secθ dθ= 1Z cosθdθ 2 4 2 4tan θ sin θ Now let w = sinθ, then dw = cosθdθ: 1 Z cosθ dθ = 1 Z 1 dw = − 1 +C =−1cscθ+C 4 sin2 θ 4 w2 4w 4 Next, we need to plug back in x. Originally we had the substitution x = 2tanθ, so tanθ = x. √ 2 This means our opposite side is x, our adjacent side is 2, and the hypotenuse is x2 +4. Then we have Z √ 1 1 x2 +4 2√ 2 dx = −4 cscθ+C =− 4x +C x x +4 1 Z √ 2 4. 1+x dx x 2 Solution: Let x = tanθ, then dx = sec θdθ: Z √1+x2 Z √1+tan2θ Z secθsec2θ Z secθ(1+tan2θ) dx = · sec2 θdθ = dθ = dθ x tanθ tanθ tanθ Z 2 Z = secθ + secθtan θ dθ = (cscθ +secθtanθ)dθ = ln|cscθ −cotθ|+secθ+C tanθ tanθ Our substitution was x = tanθ, so our triangle has opposite side x, adjacent side 1, and √ 2 hypotenuse x +1. Then Z √ √ 2 2 p 1+x x +1 1 2 dx = ln|cscθ −cotθ|+secθ+C = ln − + x +1+C x x x Ra 2√ 2 2 5. 0 x a −x dx Solution: Let x = asinθ, then dx = acosθdθ. We should also change the bounds. When x=a,sinθ =1⇒θ= π. When x=0,sinθ=0⇒θ=0. 2 Z a 2p 2 2 Z π/2 2 2 p 2 2 2 4 Z π/2 2 2 0 x a −x dx= 0 a sin θ a −a sin θ·acosθdθ =a 0 sin θcos θdθ Use half angle identity: Z π/2 Z π/2 4 Z π/2 4 2 2 4 1 1 a 2 a 0 sin θcos θdθ = a 0 2 (1 −cos2θ) 2 (1+cos2θ)dθ = 4 0 (1 −cos 2θ)dθ 4 Z π/2 4 Z π/2 4 4 a a 1 a 1 π/2 a π 2 2 = 4 sin 2θdθ = 4 2(1−cos 4θ)dθ = 8 θ − 4 sin4θ = 16 0 0 0 6. Z 0.6 √ x2 2dx 0 9−25x Solution: Let’s simplify the integral a little bit: Z 0.6 2 Z 0.6 2 Z 0.6 2 √ x dx = q x dx = q x dx 0 9−25x2 0 9(1− 25x2) 0 3 1−(5x)2 9 3 Let 5x = sinθ, then x = 3 sinθ and dx = 3 cosθdθ. We should also change the bounds. 3 5 5 When x=0.6,sinθ =1⇒θ= pi. When x=0,sinθ =0⇒θ =0. Then 2 Z 0.6 2 Z π/2 (3 sinθ)2 Z π/2 33sin2θcosθ x 5 3 5 0 q 5 2dx = 0 p 2 · 5 cosθdθ = 0 3cosθ dθ 3 1−(3x) 3 1−sin θ 2 9 Z π/2 9 1 Z π/2 9 1 π/2 9π 2 = 125 0 sin θdθ = 125 · 2 0 (1 −cos2θ)dθ = 250 θ − 2 sin2θ 0 = 500 R1√ 2 7. 0 x +1dx Solution: Let x = tanθ, then dx = sec2θdθ. When x = 1,tanθ = 1 ⇒ θ = π. When 4 x=0,tanθ=0⇒θ=0. Then Z 1p 2 Z π/4p 2 2 Z π/4 3 0 x +1dx= 0 tan θ+1·sec θdθ = 0 sec θdθ Wedid this integral on a previous practice sheet, you just need to use integration by parts: Z π/4 1 π/4 1 √ √ 3 sec θdθ = (secθtanθ+ln|secθ+tanθ|) = 2+ln( 2+1) 2 2 0 0 8. Z √ 2 x dx x +x+1 Solution: Complete the square: x2 +x+1 = (x+ 1)2 + 3. Then Z Z 2 4 √ x dx = q x dx x2 +x+1 (x+ 1)2 + 3 2 4 Let u = x+ 1, then du = dx: 2 Z x Z u−1 Z u 1 Z 1 q dx = q 2 du= q du− q du 1 2 3 2 3 2 3 2 2 3 (x+ 2) + 4 u + 4 u + 4 u + 4 √ √ Wewill use the same substitution for both integrals. Let u = 3 tanθ, then du = 3 sec2 θdθ: 2 2 Z Z Z √3 tanθ √ Z √ q u du−1 q 1 du = q 2 3 sec2 θdθ−1 q 1 3 sec2 θdθ 2 3 2 2 3 3 2 3 2 2 3 2 3 2 u + 4 u + 4 4 tan θ + 4 4 tan θ + 4 Z √ √ Z √ √ Z Z 3 tanθ 3 sec2θ 1 3 sec2 θ 3 1 2 2 2 = √ dθ − √ dθ = secθtanθdθ− secθdθ 3 secθ 2 3 secθ 2 2 2 √ 2 = 3secθ−1ln|secθ+tanθ|+C 2 2 √ Nowweneedtoplug u back in. Our substitution was u = 3 tanθ, so our triangle with have √ q 2 3 2 3 u on the opposite side, 2 on the adjacent side, and u + 4 on the hypotenuse. So then √ r q 2 3 3 1 3 1 2 u + 4 2u 2 √ √ 2 secθ− 2 ln|secθ+tanθ|+C = u + 4 − 2 ln 3 + 3+C 3 Next plug back in x: s q Z 1 2 3 x 1 2 3 1 2 (x+ ) + 2(x+ 1) q dx = x+ + − ln √2 4 + √ 2 +C 1 2 3 2 4 2 3 3 (x+ 2) + 4 9. Z x2 2 3/2dx (3+4x−4x ) 2 2 2 1 1 Solution: Complete the square: 3 + 4x − 4x = 3 − 4(x − x) = 3 − 4(x − x + 4 − 4) = 3−4(x−1)2+1=4−4(x−1)2. So then 2 2 Z 2 Z 2 Z 2 x dx = x dx = x dx q q 2 3/2 3 3 (3+4x−4x ) 4−4(x−1)2 8 1−(x−1)2 2 2 Let u = x− 1, du = dx: 2 Z 2 Z (u+ 1)2 Z u2+u+1 x dx = 2 dx = 1 √ 4 du q √ 3 2 3 8 2 3 1 2 8 1−u ( 1−u ) 8 1−(x−2) Z 2 Z Z = 1 √ u du+ √ u du+1 √ 1 du 8 2 3 2 3 4 2 3 ( 1−u ) ( 1−u ) ( 1−u ) Now let u = sinθ, so du = cosθdθ: ! = 1 Z p sin2θ2 3 cosθdθ+Z p sinθ2 3 cosθdθ+ 1Z p 1 2 3 cosθdθ 8 ( 1−sin θ) ( 1−sin θ) 4 ( 1−sin θ) Z 2 Z Z = 1 sin θcosθdθ+ sinθcosθdθ+ 1 cosθ dθ 3 3 3 8 cos θ cos θ 4 cos θ = 1 Z sin2θdθ+Z sinθ dθ+ 1Z 1 dθ 8 cos2θ cos2θ 4 cos2θ 1 Z 2 Z 1 Z 2 = 8 tan θdθ+ secθtanθdθ+ 4 sec θdθ = 1 Z (sec2θ−1)dθ+Z secθtanθdθ+ 1Z sec2θdθ 8 4 = 1 tanθ−θ+secθ+ 1tanθ+C = 15tanθ−θ+secθ+C 8 4 8 4 Now we need to plug u back in. Our substitution was u = sinθ, so the opposite side will be √ 2 u, the hypotenuse will be 1, and the adjacent side will be 1−u : 1 5 1 5√ u −1 √ 1 8 4 tanθ −θ+secθ +C = 8 4 2 −sin u+ 2 +C 1−u 1−u 4
no reviews yet
Please Login to review.