jagomart
digital resources
picture1_Math3b Trigsub Solutions


 155x       Filetype PDF       File size 0.14 MB       Source: web.math.ucsb.edu


File: Math3b Trigsub Solutions
practice problems trig substitution written by victoria kala vtkala math ucsb edu november 9 2014 the following are solutions to the trig substitution practice problems posted on november 9 r ...

icon picture PDF Filetype PDF | Posted on 15 Sep 2022 | 3 years ago
Partial capture of text on file.
                                                 Practice Problems: Trig Substitution
                                                                Written by Victoria Kala
                                                                  vtkala@math.ucsb.edu
                                                                    November 9, 2014
                        The following are solutions to the Trig Substitution practice problems posted on November 9.
                                                                     R √ 1             −1
                           1. Use trig substitution to show that            2 dx = sin    x+C
                                                                         1−x
                              Solution: Let x = sinθ, then dx = cosθ:
                                  Z √ 1              Z p 1                        Z cosθ         Z                    −1
                                             2dx =                2   · cosθdθ =     cosθdθ =       dθ = θ +C = sin      x+C
                                        1−x                1−sin θ
                              
                                                                     R   1            −1
                           2. Use trig substitution to show that       1+x2dx = tan      x+C
                                                                        2
                              Solution: Let x = tanθ, then dx = sec xdx:
                                   Z     1          Z       1          2        Z sec2θ        Z                      −1
                                      1+x2dx=          1+tan2θ ·sec θdθ =          sec2 θdθ =     dθ = θ +C = tan        x+C
                              
                           3. Z     √1       dx
                                   2   2
                                 x    x +4
                                                                            2
                              Solution: Let x = 2tanθ, then dx = 2sec θdθ:
                                      Z                     Z                                        Z            2
                                            √1                         √1                    2               2sec θ
                                           2    2    dx =           2         2       · 2 sec θdθ =           2          dθ
                                          x   x +4             4tan θ 4tan θ+4                           4tan θ·2secθ
                                                                =Z secθ dθ= 1Z cosθdθ
                                                                           2        4        2
                                                                      4tan θ              sin θ
                              Now let w = sinθ, then dw = cosθdθ:
                                                   1 Z  cosθ dθ = 1 Z      1 dw = − 1 +C =−1cscθ+C
                                                   4    sin2 θ      4     w2          4w            4
                              Next, we need to plug back in x. Originally we had the substitution x = 2tanθ, so tanθ = x.
                                                                                                                           √      2
                              This means our opposite side is x, our adjacent side is 2, and the hypotenuse is               x2 +4.
                              Then we have           Z                                         √
                                                              1              1                   x2 +4
                                                          2√ 2       dx = −4 cscθ+C =−            4x    +C
                                                         x   x +4
                              
                                                                             1
                          Z √       2
                        4.     1+x dx
                                 x
                                                                2
                          Solution: Let x = tanθ, then dx = sec θdθ:
                              Z √1+x2          Z √1+tan2θ                Z secθsec2θ       Z secθ(1+tan2θ)
                                         dx =                 · sec2 θdθ =            dθ =                    dθ
                                    x                tanθ                      tanθ                 tanθ
                               Z                  2        Z
                             =      secθ + secθtan θ    dθ =    (cscθ +secθtanθ)dθ = ln|cscθ −cotθ|+secθ+C
                                    tanθ      tanθ
                          Our substitution was x = tanθ, so our triangle has opposite side x, adjacent side 1, and
                                      √ 2
                          hypotenuse    x +1. Then
                                Z √                                             √            
                                          2                                         2           p
                                     1+x                                          x +1      1      2
                                           dx = ln|cscθ −cotθ|+secθ+C = ln               − + x +1+C
                                     x                                             x       x
                          Ra 2√ 2       2
                        5. 0 x   a −x dx
                          Solution: Let x = asinθ, then dx = acosθdθ. We should also change the bounds. When
                          x=a,sinθ =1⇒θ= π. When x=0,sinθ=0⇒θ=0.
                                                 2
                              Z a 2p 2      2     Z π/2 2    2 p 2      2   2                4 Z π/2  2     2
                               0 x    a −x dx= 0        a sin θ   a −a sin θ·acosθdθ =a        0   sin θcos θdθ
                          Use half angle identity:
                              Z π/2                    Z π/2                                  4 Z π/2
                             4         2    2        4      1             1                 a               2
                            a  0    sin θcos θdθ = a    0   2 (1 −cos2θ) 2 (1+cos2θ)dθ = 4       0  (1 −cos 2θ)dθ
                                    4 Z π/2             4 Z π/2                    4                     4
                                   a                   a       1                  a        1         π/2   a π
                                              2                         2                           
                                = 4        sin 2θdθ = 4        2(1−cos 4θ)dθ = 8       θ − 4 sin4θ     = 16
                                       0                   0                                         0
                          
                        6. Z 0.6 √  x2   2dx
                            0     9−25x
                          Solution: Let’s simplify the integral a little bit:
                                      Z 0.6      2         Z 0.6       2            Z 0.6      2
                                            √ x       dx =       q x          dx =        q x         dx
                                        0    9−25x2          0     9(1− 25x2)        0   3 1−(5x)2
                                                                         9                       3
                          Let 5x = sinθ, then x = 3 sinθ and dx = 3 cosθdθ. We should also change the bounds.
                               3                     5                 5
                          When x=0.6,sinθ =1⇒θ= pi. When x=0,sinθ =0⇒θ =0. Then
                                                         2
                                Z 0.6       2           Z π/2  (3 sinθ)2               Z π/2 33sin2θcosθ
                                           x                    5           3                 5
                                 0     q      5  2dx = 0       p       2  · 5 cosθdθ = 0          3cosθ     dθ
                                     3   1−(3x)              3 1−sin θ
                                                                    2
                                    9 Z π/2              9   1 Z π/2                   9       1      π/2     9π
                                               2                                                         
                                = 125 0     sin θdθ = 125 · 2 0     (1 −cos2θ)dθ = 250     θ − 2 sin2θ   0  = 500
                           
                           R1√ 2
                        7.  0   x +1dx
                           Solution: Let x = tanθ, then dx = sec2θdθ. When x = 1,tanθ = 1 ⇒ θ = π. When
                                                                                                               4
                           x=0,tanθ=0⇒θ=0. Then
                                           Z 1p 2            Z π/4p     2          2       Z π/4    3
                                            0    x +1dx= 0           tan θ+1·sec θdθ = 0         sec θdθ
                           Wedid this integral on a previous practice sheet, you just need to use integration by parts:
                                   Z π/4                                                                     
                                                    1                                π/4   1 √         √
                                            3                                       
                                         sec θdθ =    (secθtanθ+ln|secθ+tanθ|)           =      2+ln( 2+1)
                                                    2                                     2
                                     0                                               0
                           
                        8. Z √ 2 x         dx
                                x +x+1
                           Solution: Complete the square: x2 +x+1 = (x+ 1)2 + 3. Then
                                                     Z                    Z    2     4
                                                        √ x          dx =    q x            dx
                                                          x2 +x+1              (x+ 1)2 + 3
                                                                                     2     4
                           Let u = x+ 1, then du = dx:
                                        2
                                    Z         x             Z   u−1           Z     u          1 Z      1
                                       q              dx =     q 2 du= q                  du−       q        du
                                               1 2   3            2   3             2   3      2        2   3
                                         (x+ 2) + 4              u + 4             u + 4              u + 4
                                                                                         √                   √
                           Wewill use the same substitution for both integrals. Let u =   3 tanθ, then du =   3 sec2 θdθ:
                                                                                         2                    2
                           Z                  Z                 Z     √3 tanθ    √               Z                 √
                              q u       du−1     q 1      du =     q 2             3 sec2 θdθ−1     q 1              3 sec2 θdθ
                                  2   3     2       2    3           3    2     3 2            2      3    2     3 2
                                 u + 4             u + 4             4 tan θ + 4                      4 tan θ + 4
                                    Z √        √                Z √              √ Z                     Z
                                         3 tanθ 3 sec2θ       1     3 sec2 θ       3                   1
                                        2       2                   2
                                  =         √           dθ −       √        dθ =        secθtanθdθ−        secθdθ
                                             3 secθ           2      3 secθ       2                    2
                                             2            √         2
                                                        = 3secθ−1ln|secθ+tanθ|+C
                                                           2          2               √
                           Nowweneedtoplug u back in. Our substitution was u =          3 tanθ, so our triangle with have
                                                   √                             q 2
                                                     3                              2   3
                           u on the opposite side, 2 on the adjacent side, and     u + 4 on the hypotenuse. So then
                                    √                                    r                q               
                                                                                              2   3       
                                      3        1                                3    1   2  u + 4      2u
                                                                            2                √        √ 
                                     2 secθ− 2 ln|secθ+tanθ|+C =           u + 4 − 2 ln       3     + 3+C
                                                                                                          
                                                                      3
                            Next plug back in x:
                                                         s                        q                           
                                 Z                                                      1 2   3             
                                           x                     1 2    3    1   2   (x+ ) +         2(x+ 1)
                                    q              dx =      x+       + − ln            √2      4 +    √ 2 +C
                                           1 2    3              2      4    2            3              3    
                                     (x+ 2) + 4                                                              
                         9. Z         x2   2 3/2dx
                               (3+4x−4x )
                                                                         2            2                2        1   1
                            Solution: Complete the square: 3 + 4x − 4x = 3 − 4(x − x) = 3 − 4(x − x + 4 − 4) =
                            3−4(x−1)2+1=4−4(x−1)2. So then
                                      2                    2
                                  Z           2             Z            2               Z            2
                                             x         dx =             x          dx =              x          dx
                                                                 q                             q
                                                                                                           
                                                  2 3/2                           3                            3
                                     (3+4x−4x )                    4−4(x−1)2                8    1−(x−1)2
                                                                             2                            2
                            Let u = x− 1, du = dx:
                                         2
                                        Z            2              Z     (u+ 1)2           Z u2+u+1
                                                   x           dx =            2     dx = 1     √        4 du
                                             q                           √       
                                                           
                                                              3                  2 3       8           2 3
                                                         1 2           8    1−u                (  1−u )
                                          8     1−(x−2)
                                              Z        2          Z                     Z                
                                         = 1       √ u        du+      √ u        du+1       √ 1       du
                                            8              2 3                2 3      4            2 3
                                                  (  1−u )            (  1−u )              (  1−u )
                            Now let u = sinθ, so du = cosθdθ:
                                                                                                                      !
                             = 1 Z p sin2θ2 3 cosθdθ+Z p sinθ2 3 cosθdθ+ 1Z p                          1 2 3 cosθdθ
                               8      (  1−sin θ)                 (  1−sin θ)              4    (  1−sin θ)
                                                                                                     
                                                    Z    2            Z                   Z
                                             = 1       sin θcosθdθ+      sinθcosθdθ+ 1        cosθ dθ
                                                            3                 3                 3
                                                8        cos θ             cos θ         4   cos θ
                                                                                                
                                                  = 1 Z sin2θdθ+Z sinθ dθ+ 1Z              1   dθ
                                                    8      cos2θ         cos2θ      4    cos2θ
                                                                                                  
                                                   1   Z     2      Z                 1 Z     2
                                                = 8      tan θdθ+      secθtanθdθ+ 4       sec θdθ
                                                                                                    
                                              = 1 Z (sec2θ−1)dθ+Z secθtanθdθ+ 1Z sec2θdθ
                                                 8                                       4
                                       = 1 tanθ−θ+secθ+ 1tanθ+C = 15tanθ−θ+secθ+C
                                          8                      4               8   4
                            Now we need to plug u back in. Our substitution was u = sinθ, so the opposite side will be
                                                                                      √       2
                            u, the hypotenuse will be 1, and the adjacent side will be  1−u :
                                      1 5                          1 5√ u             −1     √ 1      
                                      8   4 tanθ −θ+secθ +C = 8 4                 2 −sin    u+          2  +C
                                                                             1−u                  1−u
                                                                       4
The words contained in this file might help you see if this file matches what you are looking for:

...Practice problems trig substitution written by victoria kala vtkala math ucsb edu november the following are solutions to posted on r use show that dx sin x c solution let then cos z p d xdx tan sec now w dw csc next we need plug back in originally had so this means our opposite side is adjacent and hypotenuse have ln cot was triangle has ra a asin acos should also change bounds when half angle identity s simplify integral little bit q pi wedid previous sheet you just integration parts...

no reviews yet
Please Login to review.