jagomart
digital resources
picture1_Linear Regression Ppt 69669 | Regression Analyses


 177x       Filetype PPTX       File size 1.45 MB       Source: www.guianaplants.stir.ac.uk


File: Linear Regression Ppt 69669 | Regression Analyses
linear regression polynomial regression red curve fits the data better than the green curve situations where the relation between the dependent and independent variable seems to be non linear we ...

icon picture PPTX Filetype Power Point PPTX | Posted on 29 Aug 2022 | 3 years ago
Partial capture of text on file.
       Linear Regression
              Polynomial Regression
     red curve fits the data better than the green curve= situations 
     where the relation. between the dependent and independent 
     variable seems to be non-linear we can deploy Polynomial 
     Regression Models.
   Quantile (percentile) Regression
                      • generally use it when outliers, high 
                       skeweness and heteroscedasticity 
                       exist in the data.
                      • aims to estimate either the 
                       conditional median or 
                       other quantiles of the response 
                       variable
                      • we try to estimate the quantile of 
                       the dependent variable given the 
                       values of X’s.
          Logistic Regression
                      • dependent variable is binary
                      • y follows binomial distribution 
                      and hence is not normal
                      • the error terms are not normally 
                      distributed.
      Cox Regression (survival analysis; 
        proportional hazards model)
                       • investigating the effect of several variables 
                        upon the time a specified event takes to 
                        happen
                       • time-to-event data e.g Time from first 
                        heart attack to the second
                       • Dual targets are set for the survival model 
                       1. A continuous variable representing the 
                       time to event.
                       2. A binary variable representing the status 
                       whether event occurred or not.
The words contained in this file might help you see if this file matches what you are looking for:

...Linear regression polynomial red curve fits the data better than green situations where relation between dependent and independent variable seems to be non we can deploy models quantile percentile generally use it when outliers high skeweness heteroscedasticity exist in aims estimate either conditional median or other quantiles of response try given values x s logistic is binary y follows binomial distribution hence not normal error terms are normally distributed cox survival analysis proportional hazards model investigating effect several variables upon time a specified event takes happen e g from first heart attack second dual targets set for continuous representing status whether occurred...

no reviews yet
Please Login to review.