159x Filetype XLSX File size 0.40 MB Source: people.duke.edu
Week PRICE 12PK PRICE_12PK_LN PRICE 18PK PRICE_18PK_LN PRICE 30PK PRICE_30PK_LN 1 19.98 2.995 14.10 2.646 15.19 2.721 2 19.98 2.995 18.65 2.926 15.19 2.721 3 19.98 2.995 18.65 2.926 13.87 2.630 4 19.98 2.995 18.65 2.926 12.83 2.552 The data consists of 52 weeks of cases-sold and price-per-case data for 3 carton sizes of beer (12-packs, 18-packs, 5 19.98 2.995 18.65 2.926 13.16 2.577 30-packs) at a small chain of supermarkets. 6 19.98 2.995 18.65 2.926 15.19 2.721 Six additional rows of hypothetical price data for 18-packs have been entered for purposes of forecasting from the 7 19.98 2.995 18.65 2.926 13.92 2.633 models. (Forecasts are automatically generated when the models are fitted.) 8 20.10 3.001 18.73 2.930 14.42 2.669 9 20.12 3.002 18.75 2.931 13.83 2.627 The variable transformation tool in RegressIt has been used to apply the natural log transformation to all of the original sales and price variables. The names of the logged variables end in "_LN". 10 20.13 3.002 18.75 2.931 14.50 2.674 11 20.14 3.003 18.75 2.931 13.87 2.630 12 20.12 3.002 18.75 2.931 13.64 2.613 13 20.12 3.002 13.87 2.630 14.31 2.661 14 20.13 3.002 14.27 2.658 13.85 2.628 15 20.14 3.003 18.76 2.932 14.20 2.653 16 20.14 3.003 18.77 2.932 13.64 2.613 17 20.13 3.002 13.87 2.630 14.33 2.662 18 20.13 3.002 14.14 2.649 13.14 2.576 19 20.13 3.002 18.76 2.932 13.81 2.625 20 20.13 3.002 18.72 2.930 15.19 2.721 21 20.13 3.002 18.76 2.932 13.13 2.575 22 19.18 2.954 18.76 2.932 13.63 2.612 23 14.78 2.693 18.74 2.931 15.19 2.721 24 16.04 2.775 18.75 2.931 13.89 2.631 25 20.12 3.002 18.75 2.931 14.28 2.659 26 19.75 2.983 18.75 2.931 15.19 2.721 27 19.65 2.978 18.75 2.931 13.12 2.574 28 19.69 2.980 13.79 2.624 13.78 2.623 29 20.12 3.002 13.49 2.602 15.19 2.721 30 20.12 3.002 14.89 2.701 15.19 2.721 31 20.13 3.002 13.94 2.635 15.19 2.721 32 20.14 3.003 13.67 2.615 15.19 2.721 33 15.14 2.717 14.43 2.669 15.19 2.721 34 14.33 2.662 18.75 2.931 15.19 2.721 35 16.24 2.787 18.22 2.903 13.14 2.576 36 19.93 2.992 14.06 2.643 13.45 2.599 37 21.06 3.047 14.43 2.669 13.00 2.565 38 21.19 3.054 19.48 2.969 13.60 2.610 39 21.23 3.055 15.15 2.718 14.46 2.671 40 20.12 3.002 13.79 2.624 14.94 2.704 41 14.73 2.690 14.31 2.661 15.19 2.721 42 14.57 2.679 19.50 2.970 15.19 2.721 43 15.94 2.769 13.85 2.628 15.19 2.721 44 20.70 3.030 14.23 2.655 13.43 2.597 45 19.57 2.974 19.31 2.961 14.37 2.665 46 19.60 2.976 19.29 2.960 15.19 2.721 47 19.94 2.993 13.76 2.622 15.19 2.721 48 21.28 3.058 13.45 2.599 15.19 2.721 49 14.56 2.678 15.13 2.717 15.19 2.721 50 14.39 2.667 19.43 2.967 15.19 2.721 51 16.81 2.822 13.26 2.585 15.19 2.721 52 19.86 2.99 13.92 2.633 15.19 2.721 53 13.00 2.565 54 14.00 2.639 55 15.00 2.708 56 16.00 2.773 57 17.00 2.833 58 18.00 2.890 59 19.00 2.944 60 20.00 2.996 CASES 12PK CASES_12PK_LN CASES 18PK CASES_18PK_LN CASES 30PK CASES_30PK_LN 223.5 5.409 439 6.0845 55.00 4.007 215.0 5.371 98 4.5850 66.75 4.201 227.5 5.427 70 4.2485 242.00 5.489 244.5 5.499 52 3.9512 488.50 6.191 The data consists of 52 weeks of cases-sold and price-per-case data for 3 carton sizes of beer (12-packs, 18-packs, 30-packs) at a small chain of supermarkets.313.55.748 64 4.1589 308.75 5.733 279.0 5.631 72 4.2767 111.75 4.716 Six additional rows of hypothetical price data for 18-packs have been entered for purposes of forecasting from the 238.0 5.472 47 3.8501 252.50 5.531 models. (Forecasts are automatically generated when the models are fitted.)315.55.754854.4427221.25 5.399 217.0 5.380 59 4.0775 245.25 5.502 The variable transformation tool in RegressIt has been used to apply the natural log transformation to all of the original sales and price variables. The names of the logged variables end in "_LN".209.55.345634.1431148.505.001 227.0 5.425 57 4.0431 229.75 5.437 216.5 5.378 54 3.9890 312.00 5.743 169.0 5.130 404 6.0014 96.75 4.572 178.0 5.182 380 5.9402 123.25 4.814 301.5 5.709 65 4.1744 200.50 5.301 266.5 5.585 40 3.6889 359.75 5.885 182.5 5.207 456 6.1225 113.50 4.732 159.0 5.069 176 5.1705 136.50 4.916 285.5 5.654 61 4.1109 225.50 5.418 360.0 5.886 91 4.5109 122.25 4.806 263.0 5.572 59 4.0775 443.75 6.095 443.5 6.095 83 4.4188 322.75 5.777 1101.5 7.004 41 3.7136 53.00 3.970 814.0 6.702 47 3.8501 140.75 4.947 365.0 5.900 84 4.4308 210.75 5.351 510.0 6.234 85 4.4427 110.50 4.705 580.5 6.364 116 4.7536 568.25 6.343 251.0 5.525 544 6.2989 115.50 4.749 237.0 5.468 890 6.7912 58.75 4.073 302.5 5.712 371 5.9162 77.25 4.347 229.5 5.436 557 6.3226 66.25 4.193 188.5 5.239 775 6.6529 50.00 3.912 795.5 6.679 236 5.4638 46.50 3.839 1556.5 7.350 43 3.7612 65.75 4.186 807.5 6.694 63 4.1431 252.75 5.532 243.0 5.493 469 6.1506 179.00 5.187 201.5 5.306 335 5.8141 226.25 5.422 294.0 5.684 75 4.3175 288.50 5.665 220.5 5.396 461 6.1334 114.25 4.738 255.5 5.543 817 6.7056 70.00 4.248 920.5 6.825 200 5.2983 47.75 3.866 730.0 6.593 32 3.4657 98.75 4.593 262.5 5.570 460 6.1312 77.00 4.344 209.5 5.345 751 6.6214 160.50 5.078 283.0 5.645 70 4.2485 143.50 4.966 262.5 5.570 80 4.3820 133.00 4.890 310.0 5.737 523 6.2596 68.75 4.230 278.5 5.629 741 6.6080 81.75 4.404 741.5 6.609 130 4.8675 56.25 4.030 1316.0 7.182 69 4.2341 68.75 4.230 449.0 6.107 493 6.2005 49.25 3.897 505.0 6.225 814 6.7020 76.50 4.337
no reviews yet
Please Login to review.