Authentication
192x Tipe PPT Ukuran file 0.55 MB Source: eprints.binadarma.ac.id
Thus, the general purpose of multiple regression is to learn more about the relationship between several independent or predictor variables and a dependent or output variable. Suppose that the Yield in a chemical process depends on Temperature and the Catalyst concentration, a multiple regression that describe this relationship is, Y = b0+b1*X1+b2*X2+ € → (a) Where Y = Yield. X1 = Temp:, X2 = Catalyst cont:. This is multiple linear regression model with 2 regressors. The term linear is used because equation (a) is a linear function of the unknown parameters bi’s. Regression Models. Depending on nature of relationship regression models are two types. Linear regression model, including a.Simple-linear regression (one indep: var.) b.Multiple-linear regression. Non-Linear regression model, including a.Polynomial regression. b.Exponential regression ,etc. Types of multiple regression • There are three types of multiple regression, each of which is designed to answer a different question: – Standard multiple regression is used to evaluate the relationships between a set of independent variables and a dependent variable. – Hierarchical, or sequential, regression is used to examine the relationships between a set of independent variables and a dependent variable, after controlling for the effects of some other independent variables on the dependent variable. – Stepwise, or statistical, regression is used to identify the subset of independent variables that has the strongest relationship to a dependent variable. MODEL REGRESSI LINIER BERGANDA Model yg memperlihatkan hubungan antara satu variable terikat (dependent variable) dgn beberapa variabel bebas (independent variables). Yi = 0 + 1 X1i + 2 X2i + … + k Xki + i dimana: i = 1, 2, 3, …. N (banyaknya pengamatan) , , , …, adalah parameter yang nilainya 0 1 2 k diduga melalui model: Yi = b0 + b1 X1i + b2 X2i + … + bk Xki 0 dan 1 : parameter dari fungsi yg nilainya akan diestimasi. Bersifat stochastik untuk setiap nilai X terdapat suatu distribusi probabilitas seluruh nilai Y atau Nilai Y tidak dapat diprediksi secara pasti karena ada faktor stochastik yang memberikan sifat acak i pada Y. Adanaya variabel disababkan karena: i Ketidak-lengkapan teori Perilaku manusia yang bersifat random Ketidak-sempurnaan spesifikasi model Kesalahan dalam agregasi Kesalahan dalam pengukuran
no reviews yet
Please Login to review.