162x Filetype PDF File size 0.06 MB Source: www.imomath.com
´ Math112(Calculus 2) July 2013 – Instructor: Ivan Matic Differential Equations 1 ′ 1. Show that y = x− x is a solution to the differential equation xy +y = 2x. x2 2. Show that every member of the family of functions y =Ce 2 is a solution of the differential equation y′ = xy. 2 3. (a) What can you say about a solution of y′ = −y just looking at the differential equation (without solving it)? 3 (b) Verify that all members of the family y = 3 are solutions to the equation from the part (a). x+c y2 (c) Canyouthinkofasolutiontotheequationy′ =− 3 thatisnotamemberofthefamily from (b). y2 (d) Find a solution to the initial value problem y′ = − 3 , y(0) = 0.5. 4. Solve the following equations: ′ ′ ′ y ′ (a) y =y; (b) y =−y; (c) cosy·y =x; (d) e ·y =x; (e) cosy·y′·x+siny=0;(f) siny·y′·x=cosy; y ′ y (g) e ·y ·x+e =sinx. Separable Differential Equations 1. Solve the differential equations: ′ ′ ′ 2 ′ 2 ′ (a) y =3y; (b) y =xy; (c) y = x y; (d) y = xcosy+x y ; ′ (e) y =cosx+cosx·y2;(f) y′ =(1−y2)(1−x2). x 2. Solve the initial value problems: (a) dy =y2+1,y(1)=0;(b) dy = ycosx,y(0)=1; dx dx 1+y2 dy y 3y ′ (c) dt =te , y(1) = 0; (d) xcosx = (2y+e )y , y(0) = 0. 3. Find the equation of the curve that satisfies dy = 4x3y and whose y-intercept is 7. dx 4. Find the equation of the curve that passes through the point (1,1) and whose slope at (x,y) y2 is x2. 1 ′ p 2 5. Solve the initial value problem y = 2x 1−y ,y(0)=0. 6. Solve the differential equations: ′ y y ′ ′ x y (a) y =cosx+x;(b)xy =(lny−lnx)y+y;(c)y = xey/x+y+x; x3+y2x y4 y y2 ′ ′ ′ (d) y = x2y ; (e) y = x4+x3y+x2y2 + x; (f) y = x2+y2. Linear Differential Equations 1. Solve the differential equations using the product rule: 3x ′ 3x ′ ′ (a) e y +3ye =x;(b)xy +y=xlnx;(c)sinx·y +cosx·y=tanx; ′ −3x ′ 1 ′ (d) y +3y=e ·x; (e) y + xy = lnx; (f) y +cotx·y = secx; ′ ′ 1 ′ (g) y +3y=x;(h)y +xy=sinx;(i)y +cotx·y=sinx; ′ ′ ′ (j) y +4y=3;(k)y −y=x;(l)y +sinx·y=sin(2x). 2. Solve the differential equations: ′ x ′ ′ 2 (a) y +2y=2e ;(b)y =x+5y;(c)xy −2y=x ; x ′ du (d) e +xy=xy;(e)(1+t)dt +u=1+t,t >0; ′ (f) y =x+y,y(0)=2; dv 2 t2 (g) dt −2tv=3t e ; (h) xy′ = y+x2sinx; y(π) =0. 3. If f is any differentiable function such that f′(x)+xf(x) is bounded, calculate the limit lim f(x). x→+∞ Differential Equations of Second Order 1. Solve the differential equations: ′′ ′′ ′′ ′′ (a) y =0; (b) y =8; (c) y =x; (d) y =sinx; ′ ′′ ′ ′′ (e) y =y; (f) y =y; (g) y = 3y; (h) y = 9y. 2. Solve the equations: ′′ ′ ′′ ′ (a) y −8y +12y=0;(b)y −3y +2y=0; ′′ ′ ′′ ′ (c) y −y −6y=0;(d)y −2y +y=0; ′′ ′ ′′ ′ (e) y −4y +4y=0;(f)y +y −6y=0; 2 ′′ ′ ′′ (g) y +6y +9y=0;(g)y −y=0. 3. Solve the equations: ′′ ′ ′ (a) y +2y +2y=0,y(0)=2,y(0)=1; (b) 2y′′+5y′+3y=0,y(0)=3,y′(0)=−4; ′′ ′ ′ (c) y −2y +5y=0,y(π)=0,y(π)=−2; ′′ ′ (d) y +8y +41y=0; (e) 4y′′+y=0, y(0)=3, y(π)=4; ′′ ′ (f) y −6y +25y=0,y(0)=1,y(π)=2. 3
no reviews yet
Please Login to review.