162x Filetype PDF File size 1.14 MB Source: www.ee.ic.ac.uk
3: Complex Fourier Series •Euler’sEquation •ComplexFourierSeries •AveragingComplex Exponentials •ComplexFourierAnalysis •FourierSeries↔ ComplexFourierSeries •ComplexFourierAnalysis Example •TimeShifting •Even/OddSymmetry •Antiperiodic⇒Odd HarmonicsOnly 3: Complex Fourier Series •SymmetryExamples •Summary E1.10 Fourier Series and Transforms (2014-5543) ComplexFourier Series: 3 – 1 / 12 Euler’s Equation 3: Complex Fourier Series iθ •Euler’sEquation Euler’s Equation: e =cosθ+isinθ [see RHB 3.3] •ComplexFourierSeries •AveragingComplex Exponentials •ComplexFourierAnalysis •FourierSeries↔ ComplexFourierSeries •ComplexFourierAnalysis Example •TimeShifting •Even/OddSymmetry •Antiperiodic⇒Odd HarmonicsOnly •SymmetryExamples •Summary E1.10 Fourier Series and Transforms (2014-5543) ComplexFourier Series: 3 – 2 / 12 Euler’s Equation 3: Complex Fourier Series iθ •Euler’sEquation Euler’s Equation: e =cosθ+isinθ [see RHB 3.3] •ComplexFourierSeries iθ −iθ •AveragingComplex Hence: cosθ = e +e Exponentials 2 •ComplexFourierAnalysis •FourierSeries↔ ComplexFourierSeries •ComplexFourierAnalysis Example •TimeShifting •Even/OddSymmetry •Antiperiodic⇒Odd HarmonicsOnly •SymmetryExamples •Summary E1.10 Fourier Series and Transforms (2014-5543) ComplexFourier Series: 3 – 2 / 12 Euler’s Equation 3: Complex Fourier Series iθ •Euler’sEquation Euler’s Equation: e =cosθ+isinθ [see RHB 3.3] •ComplexFourierSeries iθ −iθ •AveragingComplex Hence: cosθ = e +e Exponentials 2 •ComplexFourierAnalysis eiθ−e−iθ •FourierSeries↔ sinθ = 2i ComplexFourierSeries •ComplexFourierAnalysis Example •TimeShifting •Even/OddSymmetry •Antiperiodic⇒Odd HarmonicsOnly •SymmetryExamples •Summary E1.10 Fourier Series and Transforms (2014-5543) ComplexFourier Series: 3 – 2 / 12
no reviews yet
Please Login to review.