jagomart
digital resources
picture1_Linear Programming Problems And Solutions Graphical Method Pdf 175727 | Mec 604 Linear Progrmming Unit I


 224x       Filetype PDF       File size 1.75 MB       Source: nitsri.ac.in


File: Linear Programming Problems And Solutions Graphical Method Pdf 175727 | Mec 604 Linear Progrmming Unit I
lllliiiinnnneeeeaaaarrrr pppprrrrooooggggrrrraaaammmmmmmmiiiinnnngggg th 6 loe unit 1 mechanical dept nit srinagar ccoouurrssee iinn cchhaarrggee saad parvez mmoodduullee oouuttlliinnee introduction the linear programming model examples of linear programming problems developing linear ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
           LLLLiiiinnnneeeeaaaarrrr    PPPPrrrrooooggggrrrraaaammmmmmmmiiiinnnngggg
         th
        6 LOE (UNIT 1)
        Mechanical  Dept, NIT Srinagar 
        CCoouurrssee    IInn  cchhaarrggee
        SAAD PARVEZ
        MMoodduullee  OOuuttlliinnee
     Introduction
     The Linear Programming Model
     Examples of Linear Programming Problems 
     Developing Linear Programming Models
     Graphical Solution to LP Problems
      TThhee  SSiimmpplleexx  MMeetthhoodd
     Simplex Tableau for Maximization Problem
     Marginal Values of Additional Resources
     Sensitivity Analysis
     Complications in Applying the Simplex Method
     Duality
         IInnttrroodduuccttiioonn  
    Mathematical programming is used to find the best or optimal
     solution to a problem that requires a decision or set of
     decisions about how best to use a set of limited resources to
     achieve a state goal of objectives.
    Stepsinvolvedinmathematicalprogramming
      Conversion of stated problem into a mathematical model that
       abstracts all the essential elements of the problem.
      Exploration of different solutions of the problem.
      Findingoutthemostsuitable or optimum solution.
    Linear programming requires that all the mathematical
     functions in the model be linear functions.
                                                           TThhee  LLiinneeaarr  PPrrooggrraammmmiinngg  MMooddeell  ((11))  
                             Let:                    X , X , X , ………, X = decision variables
                                                         1          2         3                                  n
                                                     Z=Objectivefunction or linear function
                             Requirement: Maximization of the linear function Z.
                                                     Z=cX +cX +cX +………+cX                                                                                                                            …..Eq(1)
                                                                       1 1                     2 2                     3 3                                                     n n
                                         subject to the following constraints:
                                                                                                                                                                                                     …..Eq (2)
                               where a , b, and c are given constants.
                                                       ij       i                    j
The words contained in this file might help you see if this file matches what you are looking for:

...Lllliiiinnnneeeeaaaarrrr pppprrrrooooggggrrrraaaammmmmmmmiiiinnnngggg th loe unit mechanical dept nit srinagar ccoouurrssee iinn cchhaarrggee saad parvez mmoodduullee oouuttlliinnee introduction the linear programming model examples of problems developing models graphical solution to lp tthhee ssiimmpplleexx mmeetthhoodd simplex tableau for maximization problem marginal values additional resources sensitivity analysis complications in applying method duality iinnttrroodduuccttiioonn mathematical is used find best or optimal a that requires decision set decisions about how use limited achieve state goal objectives stepsinvolvedinmathematicalprogramming conversion stated into abstracts all essential elements exploration different solutions findingoutthemostsuitable optimum functions be lliinneeaarr pprrooggrraammmmiinngg mmooddeell let x variables n z objectivefunction function requirement cx eq subject following constraints where b and c are given constants ij i j...

no reviews yet
Please Login to review.