128x Filetype PDF File size 0.36 MB Source: math.ntnu.edu.tw
Chapter 5 Initial-Value Problems for Ordinary Differential Equations Hung-Yuan Fan (范洪源) Department of Mathematics, National Taiwan Normal University, Taiwan Spring 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chap . 5, Numerical Analysis (I) 1/67 Section 5.1 The Elementary Theory of Initial-Value Problems (初值問題的基本理論) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chap . 5, Numerical Analysis (I) 2/67 Objectives Develop numerical methods for approximating the solution to initial-value problem (IVP) { dy = f(t,y), a ≤ t ≤ b, dt y(a) = α, (1) where y(t) is the unique solution to IVP (1) on [a,b]. Error analysis for these numerical methods. Note: 1 The first equation in (1) is an ordinary differential equation (ODE; 常微分⽅程式). 2 y(a) = α is called an initial condition (IC; 初值條件). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chap . 5, Numerical Analysis (I) 3/67 Def 5.1, p. 261 Afunction f(t,y) satisfies a Lipschitz condition in y on a set D⊆R2if∃aLipschitz constant L > 0 s.t. |f(t, y ) − f(t,y )| ≤ L|y − y |, 1 2 1 2 whenever (t,y ) ∈ D and (t,y ) ∈ D. 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chap . 5, Numerical Analysis (I) 4/67
no reviews yet
Please Login to review.