jagomart
digital resources
picture1_Initial Value Problem Differential Equations 175612 | Ch05 Item Download 2023-01-28 09-43-02


 128x       Filetype PDF       File size 0.36 MB       Source: math.ntnu.edu.tw


File: Initial Value Problem Differential Equations 175612 | Ch05 Item Download 2023-01-28 09-43-02
chapter 5 initial value problems for ordinary differential equations hung yuan fan department of mathematics national taiwan normal university taiwan spring 2016 hung yuan fan dep of math ntnu taiwan ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                                                          Chapter 5
                                      Initial-Value Problems for Ordinary
                                                                                  Differential Equations
                                                                                                      Hung-Yuan Fan (范洪源)
                                                                                                              Department of Mathematics,
                                                                                        National Taiwan Normal University, Taiwan
                                                                                                                                  Spring 2016
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 5, Numerical Analysis (I)                                                        1/67
                                                                                                                     Section 5.1
                                                                  The Elementary Theory of
                                                                                 Initial-Value Problems
                                                                                   (初值問題的基本理論)
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 5, Numerical Analysis (I)                                                        2/67
                         Objectives
                                           Develop numerical methods for approximating the solution to
                                           initial-value problem (IVP)
                                                                                                            { dy = f(t,y),                                                      a ≤ t ≤ b,
                                                                                                                         dt
                                                                                                                        y(a) = α,                                                                                                                                                (1)
                                           where y(t) is the unique solution to IVP (1) on [a,b].
                                           Error analysis for these numerical methods.
                         Note:
                                 1
                                           The first equation in (1) is an ordinary differential equation
                                           (ODE; 常微分⽅程式).
                                 2         y(a) = α is called an initial condition (IC; 初值條件).
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 5, Numerical Analysis (I)                                                        3/67
                         Def 5.1, p. 261
                         Afunction f(t,y) satisfies a Lipschitz condition in y on a set
                         D⊆R2if∃aLipschitz constant L > 0 s.t.
                                                                                              |f(t, y ) − f(t,y )| ≤ L|y − y |,
                                                                                                                   1                                    2                                  1                  2
                         whenever (t,y ) ∈ D and (t,y ) ∈ D.
                                                                               1                                                            2
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 5, Numerical Analysis (I)                                                        4/67
The words contained in this file might help you see if this file matches what you are looking for:

...Chapter initial value problems for ordinary differential equations hung yuan fan department of mathematics national taiwan normal university spring dep math ntnu chap numerical analysis i section the elementary theory objectives develop methods approximating solution to problem ivp dy f t y a b dt where is unique on error these note first equation in an ode called condition ic def p afunction satisfies lipschitz set d rif alipschitz constant l s whenever and...

no reviews yet
Please Login to review.