jagomart
digital resources
picture1_Initial Value Problem Differential Equations 175108 | 82043028


 147x       Filetype PDF       File size 0.24 MB       Source: core.ac.uk


File: Initial Value Problem Differential Equations 175108 | 82043028
j math anal appl 367 2010 260 272 contents lists available at sciencedirect journal of mathematical analysis and applications www elsevier com locate jmaa initial value problems for fractional differential ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                              J. Math. Anal. Appl. 367 (2010) 260–272
                                                          Contents lists available at ScienceDirect
                                             Journal of Mathematical Analysis and
                                                                   Applications
                                                               www.elsevier.com/locate/jmaa
              Initial value problems for fractional differential equations involving
              Riemann–Liouville sequential fractional derivative✩
                               a,b,∗                   b                  a
              Zhongli Wei            , Qingdong Li ,JunlingChe
              a Department of Mathematics, Shandong Jianzhu University, Jinan, Shandong, 250101, Peoples Republic of China
              b School of Mathematics and System Sciences, Shandong University, Jinan, Shandong, 250100, Peoples Republic of China
              article info                                abstract
              Article history:                            In this paper, we shall discuss the properties of the well-known Mittag–Leffler function,
              Received 20 September 2009                  and consider the existence and uniqueness of solution of the initial value problem for
              Available online 18 January 2010            fractional differential equation involving Riemann–Liouville sequential fractional derivative
              Submitted by J. Shi                         by using monotone iterative method.
              Keywords:                                                                                  ©2010 Elsevier Inc. All rights reserved.
              Initial value problem
              Fractional differential equation
              Riemann–Liouville sequential fractional
              derivatives
              Upper solution and lower solution
              1. Introduction
                 Let J =[a,b] be a compact interval on the real axis R,andy be a measurable Lebesgue function, that is, y ∈ L1(a,b).
              Let x ∈ J and α ∈R (0<α 1). The Riemann–Liouville fractional integrals Iα and derivative Dα are defined by (see, for
              example, [1–3])                                                                 a+                   a+
                                         x
                      α            1             α−1                 α            d  1−α 
                      Ia+y (x)= Γ(α)       (x−s)       y(s)ds   and     Da+y (x)= dx Ia+ y (x).                                           (1.1)
                                         a
              Wewill work here following the definition of sequentialfractional derivative presented by Miller and Ross in p. 209 of [4],
                     Dα y=Dα y,
                         a+       a+    (k−1)α                                                                                           (1.2)
                       Dkαy=Dα D              y (k=2,3,...).
                         a+       a+ a+
              There is a close connection between the sequential fractional derivatives and the nonsequential Riemann–Liouville deriva-
              tives. For example, in the case k = 2, 0 < α < 1/2 and the Riemann–Liouville derivatives, the relationship between Dkαy
              and Dkα y is given by                                                                                                       a+
                     a+                                                   	
                                                             (      α−1
                      D2α (            2α            1−α   (      t −a)        (
                        a+y x)= Da+ y(t)− Ia+ y a+) Γ(α)                        x).                                                      (1.3)
               ✩ Research supported by the NNSF-China (10971046) and the NSF of Shandong Province (ZR2009AM004).
               * Corresponding author at: Department of Mathematics, Shandong Jianzhu University, Jinan, Shandong, 250101, Peoples Republic of China.
                 E-mail address: jnwzl@yahoo.com.cn (Z. Wei).
              0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
              doi:10.1016/j.jmaa.2010.01.023
                                                                             Z. Wei et al. / J. Math. Anal. Appl. 367 (2010) 260–272                                                      261
                      Weshall consider the existence of minimal and maximal solutions and uniqueness of solution of the initial value problem
                 for fractional differential equation involving Riemann–Liouville sequential fractional derivative, using the method of upper
                 and lower solutions and its associated monotone iterative method.
                          D2αy(x)= fx,y,Dα y, x∈(0,T],
                                 0+                            0+                                                                                                                     (1.4)
                               1−α                            1−α       α
                             x      y(x)|x=0 = y0,           x       D0+y (x)|x=0 = y1,
                 where 04M areconstantsandσ ∈C1−α[0,T],hasthefollowingrepresentationofsolution
                                                                                                                            
                     u(x)=Γ(α)u e (λ ,x)+Γ(α)(u −λ u ) e (λ ,t)∗e (λ ,t) (x)+ e (λ ,t)∗e (λ ,t)∗σ(t) (x),                                 (1.15)
                                    0 α   2               1     2 0    α   2       α  1             α   2       α   1
              where
                           −N+√N2−4M                      −N−√N2−4M
                     λ =                      ,λ=                             <0.                                                         (1.16)
                      1             2                 2            2
              Proof. Let
                       α        
                      D0+−λ2 u(x)=y(x), x∈(0,T].
              Then the problem in (1.14) is equivalent to
                      α          
                        D −λ y(x)=σ(x), x∈(0,T],
                          0+      1                                                                                                       (1.17)
                        1−α
                       x     y(x)|    =y =u −λ u ,
                                  x=0     0     1     2 0
              and
                      α          
                        D −λ u(x)=y(x), x∈(0,T],
                          0+      2                                                                                                       (1.18)
                        1−α
                       x    u(x)|x=0 =u0.
              By Lemma 1.1, we have that the linear initial value problems (1.16) and (1.17) have the following representation of solutions
                                                                   
                     y(x)=Γ(α)y0eα(λ1,x)+ eα(λ1,t)∗σ(t) (x),                                                                              (1.19)
                                                                  
                     u(x)=Γ(α)u0eα(λ2,x)+ eα(λ2,t)∗ y(t) (x).                                                                             (1.20)
              Substituting (1.19) into (1.20), we obtain (1.15). The proof of Lemma 1.2 is completed.     ✷
                                                                             Z. Wei et al. / J. Math. Anal. Appl. 367 (2010) 260–272                                                      263
                      By a direct computation
                                                                 x ∞ i                  (i+1)α−1  ∞                j (j+1)α−1 
                                                                      λ(x−t)                               λt
                            eα(λ1,t)∗eα(λ2,t) (x)=                             1                          ·           2                  dt
                                                                  0     i=0      Γ((i +1)α)                    j=0 Γ((j +1)α)
                                                                  ∞                   x            (i+1)α−1          (j+1)α−1
                                                              =λiλj (x−t)                                      ·   t                dt
                                                                                 1 2        Γ((i +1)α)             Γ((j+1)α)
                                                                 n=0i+j=n             0
                                                                  ∞                         (i+j+1+1)α−1
                                                              =λiλj x
                                                                                 1 2Γ((i+ j+1+1)α)
                                                                 n=0i+j=n
                                                                  ∞ n+1             n+1          (n+1+1)α−1
                                                                 λ −λ                          x
                                                              =          1          2     ·
                                                                           λ −λ             Γ((n+1+1)α)
                                                                 n=0         1      2
                                                                               ∞ n n (n+1)α−1
                                                                      1       (λ −λ )x
                                                              =                        1      2
                                                                  λ −λ                  Γ((n+1)α)
                                                                    1      2 n=0
                                                                      1                                    
                                                              =λ −λ eα(λ1,t)−eα(λ2,t) (x), x∈R.
                                                                    1      2
                 Hence, we obtain that
                 Lemma1.3.
                                                                                                          1                                    
                            eα(λ2,t)∗eα(λ1,t) (x)= eα(λ1,t)∗eα(λ2,t) (x) = λ −λ eα(λ1,t)−eα(λ2,t) (x),                                                        x∈R.                    (1.21)
                                                                                                            1      2
                      This paper is organized as follows. In Section 2 we give some preliminaries, including a property of Mittag–Leffler
                 function which will be used in our main result, a comparison result. The main results are established in Section 3.
                 2. ApropertyofMittag–Lefflerfunctionandsomelemmas
                      In the following, we shall use the definition and properties of the Γ function which listed as follows (see [29]):
                                       +∞
                          Γ(α)=  tα−1e−tdt,                                                                                                                                            (2.1)
                                       0                                           	                 	
                              1     = lim           1       α(1+α) 1+α ··· 1+α ,                                                                                                        (2.2)
                                       n→∞               α
                           Γ(α)                (n+1)                         2 	  n 	
                                 1       = lim            1      (1+α) 1+α ··· 1+α .                                                                                                    (2.3)
                                             n→∞               α
                           Γ(1+α)                    (n+1)                           2                  n
                 Let
                                                            α	                α	
                          ω (α)=α(1+α) 1+                          ··· 1+            .                                                                                                  (2.4)
                             n                               2                  n
                 Then
                              1     = lim           1       ω (α).                                                                                                                      (2.5)
                                       n→∞               α n
                           Γ(α)                (n+1)
                 Lemma2.1.For0<α1,thereexistpositiveconstants
                                                                                                              n
                          b0 >0,        b1 >0, ..., bn>0, suchthat ω (kα)=biCi+1.                                                                                                      (2.6)
                            n             n                      n                              n                  n k+i
                                                                                                            i=0
                 Hence, we have
                                                     n
                                                                  i   i+2
                          (k −1)ω (kα)=                 (i +2)b C          ,                                                                                                            (2.7)
                                       n                           n k+i
                                                   i=0
The words contained in this file might help you see if this file matches what you are looking for:

...J math anal appl contents lists available at sciencedirect journal of mathematical analysis and applications www elsevier com locate jmaa initial value problems for fractional differential equations involving riemann liouville sequential derivative a b zhongli wei qingdong li junlingche department mathematics shandong jianzhu university jinan peoples republic china school system sciences article info abstract history in this paper we shall discuss the properties well known mittag leer function received september consider existence uniqueness solution problem online january equation submitted by shi using monotone iterative method keywords inc all rights reserved derivatives upper lower introduction let be compact interval on real axis r andy measurable lebesgue that is y l x...

no reviews yet
Please Login to review.