jagomart
digital resources
picture1_Matrix Pdf 174594 | Tropp Item Download 2023-01-28 00-01-02


 137x       Filetype PDF       File size 1.55 MB       Source: www.ub.edu


File: Matrix Pdf 174594 | Tropp Item Download 2023-01-28 00-01-02
appliedrandommatrixtheory joel a tropp steele family professor of applied computationalmathematics computing mathematicalsciences california institute of technology jtropp cms caltech edu researchsupportedbyonr afosr nsf darpa sloan andmoore 1 whatisarandommatrix definition a ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
               AppliedRandomMatrixTheory
                                           ❦
                                     Joel A. Tropp
                                 Steele Family Professor of
                           Applied&ComputationalMathematics
                            Computing+MathematicalSciences
                             California Institute of Technology
                                jtropp@cms.caltech.edu
        ResearchsupportedbyONR,AFOSR,NSF,DARPA,Sloan,andMoore.                 1
                                                     WhatisaRandomMatrix?
                Definition. A random matrix is a matrix whose entries are random
                variables, not necessarily independent.
                                                            Arandommatrixincaptivity:
                                               0.0000         −1.3077         −1.3499            0.2050           0.0000 
                                                                                                                              
                                               1.8339           0.0000        −1.3077            0.0000           0.2050 
                                                                                                                              
                                           −2.2588              1.8339           0.0000        −1.3077          −1.3499 
                                                                                                                              
                                               2.7694           0.0000           1.8339          0.0000         −1.3077 
                                               0.0000           2.7694        −2.2588            1.8339           0.0000 
                                                        Whatdowewanttounderstand?
                ❧ Eigenvalues                                 ❧ Singularvalues                               ❧ Operatornorms
                ❧ Eigenvectors                                ❧ Singularvectors                              ❧ ...
                Sources: Muirhead1982;Mehta2004;Nica&Speicher2006;Bai&Silverstein2010;Vershynin2010;Tao2011;Kemp2013;Tropp2015;...
                Joel A. Tropp (Caltech), Applied RMT, Foundations of Computational Mathematics (FoCM), Barcelona, 13 July 2017                            2
                                                                                                                   38 The Generalised Product Moment Distribution in Samples
                                                                                                                   We may simplify this expression by writing
                                                                                                                                          r,1' A '       2oy A             r,'" A '
                                                                                                                                               ==. 0'     N A*
                                                                                                                                        2  2u-2rn) 
                                                                                                                                 r0 oo                 <                     1/2                  .  o 
                                                                                                                         -     U  40(X)dX                                     /                  j           n-332e-X/2a2dX 
                                                                                                                                  J?2rn                -    (2o-2)  n1/2(r(n/2))2                  20&2rn 
                                                                                                                                 ir1 2e-rn          r 
                                                                                                                               (P(nf/2))2         ,J O  r(4         +  rn) n-32dj 
                                                                                                           (8.6)               (rn)  n-3I2e-rn7r1/2          J       e     (1  +       An-3/2 
                                                                                                                                    (r(n/2)  )2             JO                        rn/ 
                                                                                                                                      n-312e-rn7rl2 
                                                                                                                               (rn)                           r     e                 2 
                                                                                                                                    (F(n/2))2 J2 
                                                                                                                                            (rn) n-3I2e-rnyrl/2                                (rn)  n-12e-rn7l/2 
                                                                                                                              (F(n/2))2(1           -((n        -    3/2)/rn))               (r(n/2))2(r           -    1)n 
                                           RandomMatricesinNumericalLinearAlgebra
                                                                                                          Finally  we recall with  the  help of Stirling's  formula  that 
                                                                                                                                                            /  /\2                 7rnn-l                           = 
                                                                                                          (8.7)                                               n2))          >  en-22                          (n         1,  2,* 
                                                                                                          now combining  (8.6) and (8.7) we obtain our desired result: 
                                                                                                                              Prob (X >  2Cr2rn) <  (rn) n-  1/2e-rn7rl  /2en . 2n-2 
                                                                                                          (8.8)                                                             7rn-l(r        -1)n 
                                                                                                                                                               -    (er.               4(r  -      1)(rrn)12 
                                                                                                              We sum up in the following  theorem: 
                                                                                                                                                                                                         j         the  matrix 
                                                                                                          (8.9)  The  probability  that  the  upper  bound  jA  of                                                                       A 
                                                                                                          of                                           12                  than                                     that  is, 
                                                                                                                (8.1)  exceeds             2.72o-n           is  less                 .027X2-n"n-12,                                with 
                                                                                                          probability  greater  than  99%  the  upper  bound  of  A  is  less  than 
                                                                                                                       12             = 2, 3,  *  . 
                                                                                                          2.72an            for n 
                                                                                                              This  follows  at  once by  taking                             =  3.70. 
                                                                                                                                                                          r 
                                                                                                               8.2  An estimate  for the  length  of a vector.  It  is well  known  that 
                                                                                                          (8.10)  If  a1, a2,  * * *,  an  are  independent  random  variables  each  of 
                                    JohnvonNeumann                                                        which  is normally  distributed  with  mean  0 and dispersion  a2 and  if 
                                                                                                            a|    is  the  length  of  the  vector  a=  (a,,  a2,                             .    ,  an),  then 
                                                                                                           I 
                        ❧ Modelforfloating-pointerrorsinLUdecomposition
                        Sources: vonNeumann&Goldstine,Bull.AMS1947andProc.AMS1951. Photo©IASArchive.
                        Joel A. Tropp (Caltech), Applied RMT, Foundations of Computational Mathematics (FoCM), Barcelona, 13 July 2017                                                                                                     4
The words contained in this file might help you see if this file matches what you are looking for:

...Appliedrandommatrixtheory joel a tropp steele family professor of applied computationalmathematics computing mathematicalsciences california institute technology jtropp cms caltech edu researchsupportedbyonr afosr nsf darpa sloan andmoore whatisarandommatrix definition random matrix is whose entries are variables not necessarily independent arandommatrixincaptivity whatdowewanttounderstand eigenvalues singularvalues operatornorms eigenvectors singularvectors sources muirhead mehta nica speicher bai silverstein vershynin tao kemp rmt foundations computational mathematics focm barcelona july the generalised product moment distribution in samples we may simplify this expression by writing r oy n...

no reviews yet
Please Login to review.