230x Filetype PDF File size 1.14 MB Source: web.pdx.edu
Exercises and Problems in Linear Algebra John M. Erdman Portland State University Version July 13, 2014 c 2010 John M. Erdman E-mail address: erdman@pdx.edu Contents PREFACE vii Part 1. MATRICESANDLINEAREQUATIONS 1 Chapter 1. SYSTEMSOFLINEAREQUATIONS 3 1.1. Background 3 1.2. Exercises 4 1.3. Problems 7 1.4. Answers to Odd-Numbered Exercises 8 Chapter 2. ARITHMETICOFMATRICES 9 2.1. Background 9 2.2. Exercises 10 2.3. Problems 12 2.4. Answers to Odd-Numbered Exercises 14 Chapter 3. ELEMENTARYMATRICES;DETERMINANTS 15 3.1. Background 15 3.2. Exercises 17 3.3. Problems 22 3.4. Answers to Odd-Numbered Exercises 23 Chapter 4. VECTORGEOMETRYINRn 25 4.1. Background 25 4.2. Exercises 26 4.3. Problems 28 4.4. Answers to Odd-Numbered Exercises 29 Part 2. VECTORSPACES 31 Chapter 5. VECTORSPACES 33 5.1. Background 33 5.2. Exercises 34 5.3. Problems 37 5.4. Answers to Odd-Numbered Exercises 38 Chapter 6. SUBSPACES 39 6.1. Background 39 6.2. Exercises 40 6.3. Problems 44 6.4. Answers to Odd-Numbered Exercises 45 Chapter 7. LINEAR INDEPENDENCE 47 7.1. Background 47 7.2. Exercises 49 iii iv CONTENTS 7.3. Problems 51 7.4. Answers to Odd-Numbered Exercises 53 Chapter 8. BASIS FOR A VECTOR SPACE 55 8.1. Background 55 8.2. Exercises 56 8.3. Problems 57 8.4. Answers to Odd-Numbered Exercises 58 Part 3. LINEAR MAPS BETWEENVECTORSPACES 59 Chapter 9. LINEARITY 61 9.1. Background 61 9.2. Exercises 63 9.3. Problems 67 9.4. Answers to Odd-Numbered Exercises 70 Chapter 10. LINEAR MAPS BETWEENEUCLIDEANSPACES 71 10.1. Background 71 10.2. Exercises 72 10.3. Problems 74 10.4. Answers to Odd-Numbered Exercises 75 Chapter 11. PROJECTIONOPERATORS 77 11.1. Background 77 11.2. Exercises 78 11.3. Problems 79 11.4. Answers to Odd-Numbered Exercises 80 Part 4. SPECTRALTHEORYOFVECTORSPACES 81 Chapter 12. EIGENVALUES AND EIGENVECTORS 83 12.1. Background 83 12.2. Exercises 84 12.3. Problems 85 12.4. Answers to Odd-Numbered Exercises 86 Chapter 13. DIAGONALIZATION OF MATRICES 87 13.1. Background 87 13.2. Exercises 89 13.3. Problems 91 13.4. Answers to Odd-Numbered Exercises 92 Chapter 14. SPECTRALTHEOREMFORVECTORSPACES 93 14.1. Background 93 14.2. Exercises 94 14.3. Answers to Odd-Numbered Exercises 96 Chapter 15. SOMEAPPLICATIONSOFTHESPECTRALTHEOREM 97 15.1. Background 97 15.2. Exercises 98 15.3. Problems 102 15.4. Answers to Odd-Numbered Exercises 103 Chapter 16. EVERYOPERATORISDIAGONALIZABLEPLUSNILPOTENT 105
no reviews yet
Please Login to review.