114x Filetype PDF File size 0.19 MB Source: angms.science
Matrix Derivatives, Single Entry Matrix and derivatives of X,XTX,detX,lndetX and lndetXTX Andersen Ang Math´ematique et de Recherche op´erationnelle Facult´e polytechnique de Mons UMONS Mons, Belgium email: manshun.ang@umons.ac.be homepage: angms.science July 14, 2017 1/17 Overview 1 Derivative involving matrix 2 Sigle Entry Matrix 3 Application of Single Entry Matrix in deriving matrix derivative 4 Chain Rule with Frobenius inner product 5 Summary 2/17 Derivative of matrix w.r.t. scalar For a matrix Y ∈ Rm×n, ∂y ∂y ∂y 11 12 ... 1n ∂x ∂x ∂x y y ... y ∂y ∂y ∂y 11 12 1n 21 22 ... 2n y y ... y ∂ 21 22 2n= ∂x ∂x ∂x (1) . . . . ∂x . . .. . . . . . . . . . . .. . y y ... y . . . m1 m2 mn ∂y ∂y ∂y m1 m2 ... mn ∂x ∂x ∂x 3/17 Derivative of sclar w.r.t. matrix For a matrix X ∈ Rm×n, ∂y is ∂X ∂y ∂y ... ∂y ∂x ∂x ∂x 11 12 1n ∂y ∂y ∂y ... ∂y ∂x ∂x ∂x = 21 22 2n (2) x x ... x 11 12 1n . . . . . . .. . x x ... x . . . ∂ 21 22 2n . . . . . . .. . . . . ∂y ∂y ∂y x x ... x ... m1 m2 mn ∂x ∂x ∂x m1 m2 mn 4/17
no reviews yet
Please Login to review.