jagomart
digital resources
picture1_Derivatives Calculus Pdf 173096 | C2 Trigo


 161x       Filetype PDF       File size 0.06 MB       Source: departments.johnabbott.qc.ca


File: Derivatives Calculus Pdf 173096 | C2 Trigo
math 201 203 re calculus ii integrals of trigonometric functions page 1 of 11 what is the antiderivative in a derivative problem a function f x is given and you ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
             Math 201-203-RE - Calculus II        Integrals of Trigonometric Functions                        Page 1 of 11
             What is the Antiderivative?
             In a derivative problem, a function f(x) is given and you find the derivative f′(x) using the formulas and rules of
             derivatives shown in a previous tutorial.
             In an antiderivative problem, the derivative f′(x) is given and you find a function f(x) using the formulas
             of antiderivatives shown later in this tutorial.
             In other words, the antiderivative is the reverse question to the derivative question.
             Trigonometric Antiderivatives Formulas
              Z sin(x)dx = −cos(x)+C                      Z cos(x)dx = sin(x)+C
              Z sec2(x)dx = tan(x)+C                      Z csc2(x)dx = −cot(x)+C
             These formulas are verified if the derivative is applied to each antiderivative answer.
             Sum, Difference & Division of terms
             To find the antiderivative of a sum or a difference of terms, use appropriate trigonometric formulas for each term.
                                    Z                           2  
             Example 1: Determine       3 cos(x) −4 sin(x)+5 sec (x) dx
                                               
             =3 sin(x) −4 −cos(x) +5 tan(x) +C ==3 sin(x)+4 cos(x)+5 tan(x)+C
             Example 2: Determine Z 2 sec x−3 cos x dx −→ Rewrite: Z 2 sec x dx−Z 3 cos x dx
                                            cos x                            cos x          cos x
             =Z 2sec x: sec xdx−Z 3(1)dx=Z 2 sec2 xdx−Z 3dx=2 tan x−3x+C
             Example 3: Determine Z 4x sin x−5 csc x dx −→ Rewrite: Z 4x sin x dx−Z 5 csc x dx
                                             sin x                             sin x          sin x
             =Z 4x(1)dx−Z 5csc x: csc xdx=Z 4xdx−Z 5 csc2 xdx
                 2                       2
             =2x −5(−cot x)+C =2x +5 cot x+C
             Math 201-203-RE - Calculus II        Integrals of Trigonometric Functions                        Page 2 of 11
                                    Z          3                   Z               Z      3
             Example 4: Determine      5−2sin xdx−→ Rewrite:          5   1   dx−     2 sin x dx
                                            2                             2               2
                                          sin x                         sin x           sin x
             =Z 5csc2 xdx−Z 2 sin xdx=5 (−cot x)−2 (−cos x)+C =−5 cot x+2 cos x+C
                                    Z 3cot x+4x sin x cos x                    Z      cos x        Z     sin x cos x
             Example 5: Determine                             dx −→ Rewrite:      3   sin x   dx+     4x           dx
                                             sin x cos x                           sin x cos x           sin x cos x
             =Z 3cos x:        1     dx+Z 4x(1)dx=Z 3          1 2 dx+Z 4xdx=Z 3csc2 xdx+Z 4xdx
                    sin x sin x cos x                       (sin x)
                              x2
                                                     2
             =3(−cot x)+4 2 +C =−3 cot x+2x +C
             Chain Rule Substitution
             To find the antiderivative of a composite trigonometric function, use chain rule substitution and
             appropriate trigonometric formulas.
             Example 6: Determine Z 3 cos 4xdx = Z 3 cos(4x)dx
             Let u = 4x (expression inside of trigonometric function is the angle)
             du = 4dx (derivative of the inside expression)
             the adjustment is necessary to replace into the original integral; we get: dx = 1 du
                                                                                       4
             replace cos(4x) with cos(u) and dx with 1 du ; we get:
                                                       4
             Z 3 cos(4x)dx −→ Z 3 cos(u) 1 du = Z    3 cos(u)du = 3 sin(u)+C (trigonometric formula is used)
                                           4         4             4
             Therefore, replace u = 4x to get answer:
             Z 3 cos(4x)dx = 3 sin(4x)+C
                              4
             Math 201-203-RE - Calculus II        Integrals of Trigonometric Functions                        Page 3 of 11
             Example 7: Determine Z 6 sin(2x+1)dx
             Let u = 2x+1 (expression inside of trigonometric function is the angle)
             du = 2dx (derivative of the inside expression)
             the adjustment is necessary to replace into the original integral; we get: dx = 1 du
                                                                                       2
             replace sin(2x+1) with sin(u) and dx with 1 du ; we get:
                                                          2
             Z 6 sin(2x+1)dx −→Z 6 sin(u) 1 du = Z 3 sin(u)du = −3 cos(u)+C (trigonometric formula is used)
                                              2
             Therefore, replace u = 2x+1 to get answer: Z 6 sin(2x+1)dx = −3 cos(2x+1)+C
             Example 8: Determine Z 4 sec2(8x+3)dx
             Let u = 8x+3 (expression inside of trigonometric function is the angle)
             du = 8dx (derivative of the inside expression)
             the adjustment is necessary to replace into the original integral; we get: dx = 1 du
                                                                                       8
             replace sec2(8x+3) with sec2(u) and dx with 1 du ; we get:
                                                            8
             Z 4 sec2(8x+3)dx −→Z 4 sec2(u) 1 du = Z 1 sec2(u)du = 1 tan(u)+C (trigonometric formula is used)
                                                 8         2             2
             Therefore, replace u = 8x+3 to get answer: Z 4 sec2(8x+3)dx = 1 tan(8x+3)+C
                                                                               2
                                    Z          2
             Example 9: Determine      4x sin(x )dx
                       2
             Let u = x   (expression inside of trigonometric function is the angle)
             du = 2xdx (derivative of the inside expression)
             the adjustment is necessary to replace into the original integral; we get: 4xdx = 2du
             replace sin(x2) with sin(u) and 4xdx with 2du ; we get:
             Z 4x sin(x2)dx −→ Z sin(u)2du = Z 2 sin(u)du = −2 cos(u)+C (trigonometric formula is used)
                                    2                Z          2              2
             Therefore, replace u = x to get answer:    4x sin(x )dx = −2 cos(x )+C
             Math 201-203-RE - Calculus II        Integrals of Trigonometric Functions                        Page 4 of 11
                                     Z    x      x
             Example 10: Determine      3e cos(e +2) dx
                      x
             Let u = e +2 (expression inside of trigonometric function is the angle)
                   x
             du = e dx (derivative of the inside expression)
                                                                                    x
             the adjustment is necessary to replace into the original integral; we get: 3e dx = 3du
                          x                         x
             replace cos(e +2) with cos(u) and 3e dx with 3du ; we get:
             Z    x      x             Z              Z
                3e cos(e +2) dx−→         cos(u)3du =     3 cos(u)du = 3 sin(u)+C (trigonometric formula is used)
                                    x                   Z     x      x                 x
             Therefore, replace u = e +2 to get answer:    3e cos(e +2) dx=3 sin(e +2)+C
                                         Z              Z sin(x)       Z              −1
             Tangent Formula Determine      tan(x)dx =     cos(x) dx =    sin x: (cos x) dx
             Let u = cos(x) (expression inside of power function)
             du = −sin xdx (derivative of the inside expression)
             the adjustment is necessary to replace into the original integral; we get: sin xdx = −du
             replace cos x with u and sin xdx with −du ; we get:
             Z tan(x)dx −→Z (u−1)(−1)du=Z −u−1du=−ln|u|+C (log formula is used)
                                                       Z                                          
                                                                                               −1
             Therefore, replace u = cos x to get answer:  tan xdx = −ln|cos x|+C = ln (cos x)       +C
                                                                                                  
                                       −1      1
             remember the ratio: (cos x)  = cos x = sec x
                                             Z tan xdx=−ln|cos x|+C =ln|sec x|+C
The words contained in this file might help you see if this file matches what you are looking for:

...Math re calculus ii integrals of trigonometric functions page what is the antiderivative in a derivative problem function f x given and you nd using formulas rules derivatives shown previous tutorial an antiderivatives later this other words reverse question to z sin dx cos c sec tan csc cot these are veried if applied each answer sum dierence division terms or use appropriate for term example determine rewrite xdx chain rule substitution composite let u expression inside angle du adjustment necessary replace into original integral we get with formula used therefore e tangent power ln log remember ratio...

no reviews yet
Please Login to review.