jagomart
digital resources
picture1_Matrix Pdf 173042 | Matriceslinearalgebra


 160x       Filetype PDF       File size 0.07 MB       Source: www.ohio.edu


File: Matrix Pdf 173042 | Matriceslinearalgebra
a brief review of matrices and linear algebra dr robert l williams ii mechanical engineering ohio university 2016 dr bob productions williar4 ohio edu people ohio edu williar4 this document ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                            
                   A Brief Review of 
             Matrices and Linear Algebra 
                            
                    Dr. Robert L. Williams II 
                   Mechanical Engineering 
                      Ohio University 
                            
                  © 2016 Dr. Bob Productions 
                            
                     williar4@ohio.edu 
                    people.ohio.edu/williar4 
                            
                            
        This document is intended as a reference guide to help students review matrices and linear 
     algebra for use in kinematics, dynamics, controls, biomechanics, and robotics.  The usefulness of this 
     document extends well beyond these fields.  However, it IS NOT intended to replace a textbook in this 
     field of mathematics. 
      
      
       
                                              2 
      
                    Table of Contents 
                           
      
     MATRIX DEFINITION ........................................................................................................................... 3 
     SPECIAL MATRICES ............................................................................................................................. 4 
     MATRIX OPERATIONS ........................................................................................................................ 5 
      MATRIX ADDITION .................................................................................................................................. 5 
      MATRIX MULTIPLICATION WITH A SCALAR ............................................................................................. 5 
      MATRIX MULTIPLICATION ....................................................................................................................... 6 
      MATRIX DETERMINANT ......................................................................................................................... 10 
      MATRIX INVERSION ............................................................................................................................... 12 
     SOLVING A SYSTEM OF LINEAR EQUATIONS ........................................................................... 15 
     MATRIX EXAMPLES IN MATLAB ................................................................................................... 17 
      
      
       
                                                                              3 
         
        Matrix Definition 
         
             A matrix is an m x n array of numbers, where m is the number of rows and n is the number of 
        columns. 
              
                                       aa a
                                       11  12     1n 
                                                   
                                       aa a
                                   A  21  22     2n  
                                                 
                                        
                                                   
                                       aaa
                                        mm12 mn
                                                   
         
         
        Matrices may be used to simplify and standardize the solution of n linear equations in n unknowns 
        (where m = n).  Matrices are used in velocity, acceleration, and dynamics linear equations (matrices are 
        not used in analytical position analysis, which requires a non-linear solution). 
         
         
          
                                                                                                                 4 
             
            Special Matrices 
             
                   These are demonstrated for 3x3 matrices, but apply to all matrix sizes. 
             
                                                               aaa
                                                               11    12   13 
                                                                            
                   square matrix (m = n = 3)             A  aaa 
                                                         21        22   23
                                                                            
                                                               aaa
                                                               31    32   33
             
             
                                                               a     00
                                                               11           
                                                                            
                                                         Aa 00
             diagonal matrix                                       22       
                                                               00a 
                                                                          33
             
             
                                                               100
                                                                       
                                                                       
             identity matrix     I  010 
                                                        
                                                          3            
                                                                       
                                                               001
                                                                       
             
             
                                                                aaa
                                                                11    21    31
                                                           T                 
             transpose matrix    Aa                                  aa    (switch rows & columns) 
                                                          12        22   32 
                                                                             
                                                                aaa
                                                                13    23   33
             
             
                                                                      aaa
                                                                      11    12   13 
                                                                 T                 
             symmetric matrix    AAaaa 
                                                          12            22   23
                                                                                   
                                                                      aaa
                                                                      13    23   33 
             
             
                                                               x 
                                                                1
                   column vector  (3x1 matrix)           X  x  
                                                         2
                                                               x 
                                                                  3
                                                               
             
             
             
                                                            T
                                                         Xx          xx
                   row vector      (1x3 matrix)                           
                                                                  123
              
The words contained in this file might help you see if this file matches what you are looking for:

...A brief review of matrices and linear algebra dr robert l williams ii mechanical engineering ohio university bob productions williar edu people this document is intended as reference guide to help students for use in kinematics dynamics controls biomechanics robotics the usefulness extends well beyond these fields however it not replace textbook field mathematics table contents matrix definition special operations addition multiplication with scalar determinant inversion solving system equations examples matlab an m x n array numbers where number rows columns aa aaa mm mn may be used simplify standardize solution unknowns are velocity acceleration analytical position analysis which requires non demonstrated but apply all sizes square diagonal identity i t transpose switch symmetric aaaaa column vector xx row...

no reviews yet
Please Login to review.