146x Filetype PDF File size 0.03 MB Source: math.hawaii.edu
Math 215 Precalculus Review Notes Formulas 2 area of circle: A = πr circumference of a circle: C =2πr volume of a sphere: V = 1 3 3πr 2 surface of a right circular cylinder: S =2πr +2πrh 2h volume of a right circular cylinder: V = πr Pythagorean Theorem: In a right triangle with hypotenuse length c and legs with lengths b and a, then a2 +b2 = c2. Properties of the Exponential Function 0 1 1. b =1andb =b x y x+y 2. b b = b x y xy 3. (b ) = b −x 1 4. b = x b x b x−y 5. y =b b Properties of the Logarithm The logarithm is the inverse of the exponential function. Thus, log x logb x (b )=log(exp x)=x and exp (log x)=b =x. b b b b b Special cases, log 1 0 (b)=log(b)=1 and log (1) = log (b )=0. b b b b 1. Property 1: log PQ=log P+log Q b b b 2. Property 2: log Pn = nlog P b b 3. Property 3: log P =log P−log Q b Q b b 4. Property 4: (Change of Base Formula) log x = logbx a log a b 1 Trigonometry Definitions 1. sinθ = opposite hypotenuse 2. cosθ = adjacent hypotenuse 3. tanθ = opposite adjacent 4. cscθ = 1 sinθ 5. secθ = 1 cosθ 6. cotθ = 1 tanθ Identities 2 2 1. sin θ +cos θ=1 2 2 2. tan θ+1=sec θ 2 2 3. 1+cot θ =csc θ 4. cos(−θ)=cosθ 5. sin(−θ)=−sinθ 6. cos(θ − π)=sinθ 2 7. sin(θ − π)=−cosθ 2 8. sin(α +β)=sinαcosβ +sinβcosα 9. cos(α+β)=cosαcosβ−sinαsinβ 10. tan(α+β)= tanα+tanβ 1−tanαtanβ 11. sin(α −β)=sinαcosβ −sinβcosα 12. cos(α−β)=cosαcosβ+sinαsinβ 13. tan(α−β)= tanα−tanβ 1+tanαtanβ 14. sin(2θ)=2sinθcosθ 2 2 15. cos(2θ)=cos θ−sin θ 16. tan(2θ)= 2tanθ 2 1−tan θ r 17. cos(θ)= 1+cosθ 2 2 r 18. sin(θ)= 1−cosθ 2 2 2
no reviews yet
Please Login to review.