167x Filetype PDF File size 0.58 MB Source: advancedhighermaths.co.uk
FORMULAE LIST Standard derivatives Standard integrals fxdx fx fx fx () () ′() () ∫ 1 1 sin−1x sec2 ax tan(ax)+c 1−x2 () a cos−1x − 1 1 sin−1 x +c 2 22 1−x ax− a tan−1x 1 1 1tan−1 x +c 2 22 1+x ax+ a a tanx sec2 x 1 ln|xc|+ x 2 ax 1 ax + cotx −cosec x e aec secx secxxtan cosecx −cosecxxcot lnx 1 x ex ex Summations 1 21 (Arithmetic series) Sn=+ an− d n () 2 n ar1− (Geometric series) S = ( ) n 1−r n n n 22 ()1 ()11()2 ()1 nn+ 2 nn++n 3 nn+ r = , r = , r = ∑∑∑ 2 6 4 r==r r= 1 1 1 Binomial theorem n n n n n! nr− r nC ab+ = ab == () where ∑ r r r=0 r rn!( −r)! Maclaurin expansion iv 234 0 0 0 fx() fx() fx() ′′ ′′′ 00 fx()=+ff() ()x+ + ++... ′ 2! 3! 4! Page two FORMULAE LIST (continued) De Moivre’s theorem n n r(cosθ +=isinθ) rncos θ+insin θ () [] Vector product ijkaaaa aa ˆ 2313 12 ===−+ × sinθ aaa ab ab n i j k 123bbbb bb bbb 2313 12 123 Matrix transformation cosθθ−sin Anti-clockwise rotation through an angle, θ about the origin, ⎡⎤ ⎢⎥ sinθθcos ⎣⎦ Page three
no reviews yet
Please Login to review.