150x Filetype PDF File size 1.83 MB Source: www.math.ncku.edu.tw
Chapter 17: Double and Triple Integrals Section 17.1 Multiple Sigma Notation Section 17.5 Further Applications of the Double Integration a. Double Sigma Notation a. Mass of a Plate b. Properties b. Center of Mass of a Plate c. Centroids Section 17.2 Double Integrals d. Applications a. Double Integral Over a Rectangle b. Partitions Section 17.6 Triple Integrals c. More on Partitions a. Triple Integral Over a Box d. Upper Sums and Lower Sums b. Triple Integral Over a More General Solid e. Double Integral Over a Rectangle R c. Volume f. Double Integral as a Volume g. Volume of T Section 17.7 Reduction to Repeated Integrals h. Double Integral Over a Region a. Formula and Illustration i. Volume of the Solid T j. Elementary Properties: I and II Section 17.8 Cylindrical Coordinates k. Elementary Property III a. Rectangular Coordinates/ Cylindrical Coordinates l. Elementary Property IV b. Evaluating Triple Integrals m. Mean-Value Theorem for Double Integrals c. Volume in Cylindrical Coordinates Section 17.3 The Evaluation of Double Integrals By Repeated Integrals Section 17.9 Spherical Coordinates a. Type I Regions a. Longitude, Colatitude, Latitude b. Type II Region b. Spherical Wedge c. Reduction Formulas Viewed Geometrically c. Volume d. Reduction Formula e. Symmetry in Double Integration Section 17.10 Jacobians, Changing Variables a. Change of Variables Section 17.4 The Double Integral as a Limit of Riemann Sums; Polar b. Jacobian Coordinates a. Limit of Riemann Sums b. Evaluating Double Integrals Using Polar Coordinates c. Double Integral Formulas −x2 d. Integrating e Salas, Hille, Etgen Calculus: One and Several Variables Main Menu Copyright 2007 © John Wiley & Sons, Inc. All rights reserved. Multiple Sigma Notation When two indices are involved, say, ij 2i j 25, , 1 a= a= ai= + ij ij 5+ j ij ( ) we use double-sigma notation. By we mean the sum of all the a where i ranges from 1 to m and j ranges from 1 to n. For example, ij 32ij 22 223 32 ∑∑25=2⋅52+⋅5+2⋅52+ ⋅5+2⋅+52⋅5=420 ij=11= Salas, Hille, Etgen Calculus: One and Several Variables Main Menu Copyright 2007 © John Wiley & Sons, Inc. All rights reserved. Multiple Sigma Notation Salas, Hille, Etgen Calculus: One and Several Variables Main Menu Copyright 2007 © John Wiley & Sons, Inc. All rights reserved. Double Integrals The Double Integral over a Rectangle We start with a function f continuous on a rectangle R : a ≤ x ≤ b, c ≤ y ≤ d We want to define the double integral of f over R: f x,.y dxdy ∫∫ ( ) R Salas, Hille, Etgen Calculus: One and Several Variables Main Menu Copyright 2007 © John Wiley & Sons, Inc. All rights reserved.
no reviews yet
Please Login to review.