jagomart
digital resources
picture1_Double And Triple Integrals By Salas


 150x       Filetype PDF       File size 1.83 MB       Source: www.math.ncku.edu.tw


File: Double And Triple Integrals By Salas
chapter 17 double and triple integrals section 17 1 multiple sigma notation section 17 5 further applications of the double integration a double sigma notation a mass of a plate ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
   Chapter 17: Double and Triple Integrals
      Section 17.1 Multiple Sigma Notation                                           Section 17.5 Further Applications of the Double Integration
      a.  Double Sigma Notation                                                      a.   Mass of a Plate
      b.  Properties                                                                 b.   Center of Mass of a Plate
                                                                                     c.   Centroids
      Section 17.2 Double Integrals                                                  d.   Applications
      a.  Double Integral Over a Rectangle
      b.  Partitions                                                                 Section 17.6 Triple Integrals
      c.  More on Partitions                                                         a.   Triple Integral Over a Box
      d.  Upper Sums and Lower Sums                                                  b.   Triple Integral Over a More General Solid
      e.  Double Integral Over a Rectangle R                                         c.   Volume
      f.  Double Integral as a Volume
      g.  Volume of T                                                                Section 17.7 Reduction to Repeated Integrals
      h.  Double Integral Over a Region                                              a.   Formula and Illustration
      i.  Volume of the Solid T
      j.  Elementary Properties: I and II                                            Section 17.8 Cylindrical Coordinates
      k.  Elementary Property III                                                    a.   Rectangular Coordinates/ Cylindrical Coordinates
      l.  Elementary Property IV                                                     b.   Evaluating Triple Integrals
      m. Mean-Value Theorem for Double Integrals                                     c.   Volume in Cylindrical Coordinates 
      Section 17.3 The Evaluation of Double Integrals By Repeated Integrals          Section 17.9 Spherical Coordinates
      a.  Type I Regions                                                             a.   Longitude, Colatitude, Latitude
      b.  Type II Region                                                             b.   Spherical Wedge
      c.  Reduction Formulas Viewed Geometrically                                    c.   Volume
      d.  Reduction Formula
      e.  Symmetry in Double Integration                                             Section 17.10 Jacobians, Changing Variables
                                                                                     a. Change of Variables
      Section 17.4 The Double Integral as a Limit of Riemann Sums; Polar             b. Jacobian
      Coordinates
      a.  Limit of Riemann Sums
      b.  Evaluating Double Integrals Using Polar Coordinates
      c.  Double Integral Formulas
                       −x2
      d.  Integrating e                                                                                                  Salas, Hille, Etgen Calculus: One and Several Variables
                                                                        Main Menu                                      Copyright 2007 © John Wiley & Sons, Inc.  All rights reserved.
                                  Multiple Sigma Notation
            When two indices are involved, say,
                                            ij               2i                      j
                                          25,                     ,            1
                                    a=               a=                 ai= +
                                     ij                ij  5+ j           ij  (     )
            we use double-sigma notation. By
            we mean the sum of all the a where i ranges from 1 to m and j ranges from 1 
            to n. For example,                ij
                  32ij                          22 223 32
                 ∑∑25=2⋅52+⋅5+2⋅52+ ⋅5+2⋅+52⋅5=420
                  ij=11=
                                                                                               Salas, Hille, Etgen Calculus: One and Several Variables
                                                        Main Menu                            Copyright 2007 © John Wiley & Sons, Inc.  All rights reserved.
                                  Multiple Sigma Notation
                                                                                               Salas, Hille, Etgen Calculus: One and Several Variables
                                                        Main Menu                            Copyright 2007 © John Wiley & Sons, Inc.  All rights reserved.
                                           Double Integrals
             The Double Integral over a Rectangle
             We start with a function f continuous on a rectangle
                                               R : a ≤ x ≤ b, c ≤ y ≤ d
             We want to define the double integral of f over R:
                                                  f  x,.y dxdy
                                               ∫∫   (     )
                                               R
                                                                                               Salas, Hille, Etgen Calculus: One and Several Variables
                                                        Main Menu                            Copyright 2007 © John Wiley & Sons, Inc.  All rights reserved.
The words contained in this file might help you see if this file matches what you are looking for:

...Chapter double and triple integrals section multiple sigma notation further applications of the integration a mass plate b properties center c centroids d integral over rectangle partitions more on box upper sums lower general solid e r volume f as g t reduction to repeated h region formula illustration i j elementary ii cylindrical coordinates k property iii rectangular l iv evaluating m mean value theorem for in evaluation by spherical type regions longitude colatitude latitude wedge formulas viewed geometrically symmetry jacobians changing variables change limit riemann polar jacobian using x integrating salas hille etgen calculus one several main menu copyright john wiley sons inc all rights reserved when two indices are involved say ij ai we use sum where ranges from n example start with function continuous y want define dxdy...

no reviews yet
Please Login to review.