jagomart
digital resources
picture1_Multivariate Calculus Pdf 171095 | 84562 Multivariate Calculus   Alder


 161x       Filetype PDF       File size 1.13 MB       Source: library.uoh.edu.iq


File: Multivariate Calculus Pdf 171095 | 84562 Multivariate Calculus Alder
2c2 multivariate calculus michael d alder november 13 2002 2 contents 1 introduction 5 2 optimisation 7 2 1 the second derivative test 7 3 constrained optimisation 15 3 1 ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
            2C2 Multivariate Calculus
                Michael D. Alder
                November 13, 2002
           2
                   Contents
                   1 Introduction                                                                      5
                   2 Optimisation                                                                      7
                      2.1   The Second Derivative Test . . . . . . . . . . . . . . . . . . .           7
                   3 Constrained Optimisation                                                        15
                      3.1   Lagrangian Multipliers . . . . . . . . . . . . . . . . . . . . . .        15
                   4 Fields and Forms                                                                23
                      4.1   Definitions Galore . . . . . . . . . . . . . . . . . . . . . . . . .       23
                      4.2   Integrating 1-forms (vector fields) over curves. . . . . . . . . .         30
                      4.3   Independence of Parametrisation         . . . . . . . . . . . . . . . .   34
                      4.4   Conservative Fields/Exact Forms . . . . . . . . . . . . . . . .           37
                      4.5   Closed Loops and Conservatism . . . . . . . . . . . . . . . . .           40
                   5 Green’s Theorem                                                                 47
                      5.1   Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      47
                            5.1.1    Functions as transformations . . . . . . . . . . . . . . .       47
                            5.1.2    Change of Variables in Integration       . . . . . . . . . . .   50
                            5.1.3    Spin Fields    . . . . . . . . . . . . . . . . . . . . . . . .   52
                      5.2   Green’s Theorem (Classical Version)         . . . . . . . . . . . . . .   55
                                                             3
                            4                                                                      CONTENTS
                                5.3   Spin fields and Differential 2-forms       . . . . . . . . . . . . . . .   58
                                      5.3.1   The Exterior Derivative      . . . . . . . . . . . . . . . . .   63
                                      5.3.2   For the Pure Mathematicians. . . . . . . . . . . . . . .         70
                                      5.3.3   Return to the (relatively) mundane. . . . . . . . . . . .        72
                                5.4   More on Differential Stretching       . . . . . . . . . . . . . . . . .   73
                                5.5   Green’s Theorem Again        . . . . . . . . . . . . . . . . . . . . .   87
                            6 Stokes’ Theorem (Classical and Modern)                                          97
                                6.1   Classical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    97
                                6.2   Modern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
                                6.3   Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
                            7 Fourier Theory                                                                 123
                                7.1   Various Kinds of Spaces . . . . . . . . . . . . . . . . . . . . . 123
                                7.2   Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 128
                                7.3   Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
                                7.4   Fiddly Things      . . . . . . . . . . . . . . . . . . . . . . . . . . 135
                                7.5   Odd and Even Functions . . . . . . . . . . . . . . . . . . . . 142
                                7.6   Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
                                7.7   Differentiation and Integration of Fourier Series . . . . . . . . 150
                                7.8   Functions of several variables     . . . . . . . . . . . . . . . . . . 151
                            8 Partial Differential Equations                                                  155
                                8.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
                                8.2   The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . 159
                                      8.2.1   Intuitive . . . . . . . . . . . . . . . . . . . . . . . . . . 159
                                      8.2.2   Saying it in Algebra     . . . . . . . . . . . . . . . . . . . 162
                                8.3   Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 165
The words contained in this file might help you see if this file matches what you are looking for:

...C multivariate calculus michael d alder november contents introduction optimisation the second derivative test constrained lagrangian multipliers fields and forms denitions galore integrating vector elds over curves independence of parametrisation conservative exact closed loops conservatism green s theorem motivation functions as transformations change variables in integration spin classical version dierential exterior for pure mathematicians return to relatively mundane more on stretching again stokes modern divergence fourier theory various kinds spaces function applications fiddly things odd even series dierentiation several partial equations diusion equation intuitive saying it algebra laplace...

no reviews yet
Please Login to review.