153x Filetype PDF File size 1.16 MB Source: courses.smp.uq.edu.au
MATH1051 CALCULUS AND LINEAR ALGEBRA I Semester 1, 2008 Lecture Workbook Solutions How to use this workbook This book should be taken to lectures, tutorials and lab sessions. In the lectures, you will be expected to fill in the blanks in any incomplete definitions, theorems etc, and any examples which appear. The lecturer will make it clear when they are covering something that you need to complete. The completed workbook will act as a study guide designed to assist you in working through assignments and preparing for the mid-semester and final ex- ams. For this reason, it is very important to attend lectures. The text for the calculus part of the course is “Calculus” by James Stewart, 6th edition, 2008. We often refer to the text in this workbook, and many of the definitions, theorems, and examples come from the text. (References are also provided for the 5th edition). It is strongly advised that you purchase a copy. Although there is no set text for the linear algebra part of the course, there are several books in the library which cover the material well (see the course website). c Mathematics, School of Physical Sciences, The University of Queensland, Brisbane QLD 4072, Australia Edited by Phil Isaac, Birgit Loch, Joseph Grotowski, Mary Waterhouse, Victor Scharaschkin, Barbara Maen- haut. July 2007. 1 Contents 1 Complex Numbers 9 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Polar form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Euler’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Vectors 13 2.1 Revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Review Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Matrices and Linear Transformations 24 3.1 2×2matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Transformations of the plane . . . . . . . . . . . . . . . . . . . . 24 3.3 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Visualizing linear transformations . . . . . . . . . . . . . . . . . 27 3.6 Scalings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.7 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.8 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.9 Composing Linear Transformations; Matrix Multiplication . . . 34 3.10 Vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.11 Properties of Dot Product . . . . . . . . . . . . . . . . . . . . . 37 3.12 Definition: Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.13 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.14 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.15 Scalar Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 38 3.16 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 39 3.17 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 4 Vector Spaces 43 4.1 Linear combinations . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 How to test for linear independence . . . . . . . . . . . . . . . . 44 4.4 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 The span of vectors . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.7 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.9 Further Properties of Bases . . . . . . . . . . . . . . . . . . . . 56 4.10 Orthogonal and Orthonormal . . . . . . . . . . . . . . . . . . . 57 4.11 Gram-Schmidt Algorithm . . . . . . . . . . . . . . . . . . . . . 59 5 Inverses 62 5.1 The Identity Matrix . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Definition: Inverse . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 Invertible Matrices and Linear Independence . . . . . . . . . . . 65 6 Gaussian elimination 71 6.1 Simultaneous equations . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3 The general solution . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 Gauss-Jordan elimination . . . . . . . . . . . . . . . . . . . . . 85 7 Determinants 90 7.1 Definition: Determinant . . . . . . . . . . . . . . . . . . . . . . 90 7.2 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . 92 7.3 Connection with inverses and systems of linear equations . . . . 97 8 Vector Products in 3-Space 99 8.1 Definition: Cross product . . . . . . . . . . . . . . . . . . . . . 99 8.2 Application: area of a triangle . . . . . . . . . . . . . . . . . . . 102 8.3 Scalar Triple Product . . . . . . . . . . . . . . . . . . . . . . . . 104 8.4 Geometrical Interpretation . . . . . . . . . . . . . . . . . . . . . 104 3 9 Eigenvalues and eigenvectors 106 9.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.2 Eigenspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 9.3 How to find eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 107 10 Numbers 114 10.1 Number systems . . . . . . . . . . . . . . . . . . . . . . . . . . 114 10.2 Real number line and ordering on R . . . . . . . . . . . . . . . . 114 10.3 Definition: Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 115 10.4 Absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 11 Functions 119 11.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 11.2 Definition: Function, domain, range . . . . . . . . . . . . . . . . 119 11.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 11.4 Convention (domain) . . . . . . . . . . . . . . . . . . . . . . . . 121 11.5 Caution (non-functions) . . . . . . . . . . . . . . . . . . . . . . 121 11.6 Vertical line test . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 11.7 Exponential functions . . . . . . . . . . . . . . . . . . . . . . . . 123 11.8 Trigonometric functions (sin, cos, tan) . . . . . . . . . . . . . . 126 11.9 Composition of functions . . . . . . . . . . . . . . . . . . . . . . 131 11.10One-to-one (1-1) functions - Stewart, 6ed. pp. 385-388; 5ed. pp. 413-417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 11.11Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 133 11.12Logarithms - Stewart, 6ed. p. 405; 5ed. p. 434 . . . . . . . . . . 135 11.13Natural logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . 135 11.14Inverse trigonometric functions . . . . . . . . . . . . . . . . . . 138 12 Limits 146 12.1 Definition: Limit - Stewart, 6ed. p. 66; 5ed. p. 71 . . . . . . . . 146 12.2 One-sided limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.3 Theorem: Squeeze principle . . . . . . . . . . . . . . . . . . . . 152 12.4 Limits as x approaches infinity . . . . . . . . . . . . . . . . . . . 153 12.5 Some important limits . . . . . . . . . . . . . . . . . . . . . . . 157 4
no reviews yet
Please Login to review.