144x Filetype PDF File size 0.08 MB Source: www3.nd.edu
Answer Key 1 MATH225: Calculus III Name: Practice Exam 1.2 February 15, 2007 Instructor: Record your answers to the multiple choice problems by placing an × through one letter for each problem on this page. There are 9 multiple choice questions worth 6 points each and 3 partial credits problems worth 10 points each. You start with 16 points. 1. • b c d e 6. a b c • e 2. • b c d e 7. a b c • e 3. a b c d • 8. a • c d e 4. a b c d • 9. a • c d e 5. a b c d • 1 MATH225: Calculus III Name: Practice Exam 1.2 February 15,2007 Instructor: Record your answers to the multiple choice problems by placing an × through one letter for each problem on this page. There are 9 multiple choice questions worth 6 points each and 3 partial credits problems worth 10 points each. You start with 16 points. 1. a b c d e 6. a b c d e 2. a b c d e 7. a b c d e 3. a b c d e 8. a b c d e 4. a b c d e 9. a b c d e 5. a b c d e 1 1. Find the distance from the origin to the plane 2x + 3y − 6z = 14. (a) 2 (b) 14 (c) 1 (d) 7 (e) 7 3 q q 2 −x 2 2 2. Let f(x;y) = e (sin(x ) +cos(y )). Compute f π=2; π=2 . xy −π=2 q −π=2 −π=2 (a) 2πe (b) −4 π=2 e (c) −4πe q −π=2 (d) π=2 e (e) 0 q 2 2 3. Determine which of the following is the contour map of f(x;y) = x +3y . 6 6 6 4 4 4 2 2 2 0 0 0 -2 -2 -2 -4 -4 -4 -6 -6 -6 (a) -6 -4 -2 0 2 4 6 (b) -6 -4 -2 0 2 4 6 (c) -6 -4 -2 0 2 4 6 6 6 4 4 2 2 0 0 -2 -2 -4 -4 -6 -6 (d) -6 -4 -2 0 2 4 6 (e) -6 -4 -2 0 2 4 6 4. Find a unit vector that has the same direction as h−4;−7;4i. 4 7 4 2 7 2 (a) h0;−1;0i; (b) h−√15;−√15;√15i (c) h−3;−6; 3i (d) h−2;− 7 ; 2i (e) h−4;−7; 4i; 9 18 9 9 9 9 2 3 2 3 2 5. Find the equation of the line tangent to the curve defined by r(t) = ht − t;t ;t + t i at the point (0;1;2). (a) x = 2, y = 1 + 2t, z = 5 + 2t 3 2 3 2 (b) x = 3t −t, y = 1+2t , z = 2+3t +2t (c) x = 3t, y = 1 + 2t, z = 2 + 3t 2 2 (d) x = 3t −1, y = 2t, z = 3t +2t (e) x = 2t, y = 1 + 2t, z = 2 + 5t 6. Determine which of the following curves is defined by the vector function r(t) = ht;cos(t);sin(t)i. (a) (b) (c) (d) (e) 7. Find the area of the triangle with vertices (1;1;−1), (2;1;1), and (0;2;−1). (a) 3 (b) 2 (c) 1 (d) 3 (e) 1 2 2 8. Find the cosine of the angle between the vectors h2;2;−1i and h1;2;3i. 1 1 3 1 (a) −2 (b) √ (c) 0 (d) √ (e) 42 14 14 3
no reviews yet
Please Login to review.