143x Filetype PDF File size 0.19 MB Source: www.stat.washington.edu
CSSS 505 Calculus Summary Formulas Differentiation Formulas 1. d (xn) = nxn1 17. dy = dy × du Chain Rule dx dx dx dx 2. d (fg) = fg′+ gf ′ dx 3. d ( f ) = gf ′ fg′ dx g g2 d ′ ′ 4. dx f (g(x)) = f (g(x))g (x) 5. d (sin x) = cosx dx 6. d (cosx) = sin x dx 7. d (tanx) = sec2 x dx 8. d (cotx) = csc2 x dx 9. d (secx) = secxtanx dx 10. d (cscx) = cscxcotx dx 11. d (ex) = ex dx 12. d (ax) = ax lna dx 13. d (lnx) = 1 dx x 14. d (Arcsinx) = 1 dx 1x2 15. d (Arctanx) = 1 dx 1+x2 16. d (Arcsecx) = 1 dx | x | x2 1 Trigonometric Formulas 1. sin2θ +cos2θ =1 13. tanθ = sinθ = 1 2. 1+tan2θ =sec2θ cosθ cotθ 3. 1+cot2θ =csc2θ cosθ 1 4. sin(θ) = sinθ 14. cotθ = sinθ = tanθ 5. cos(θ) = cosθ 15. secθ = 1 6. tan(θ) = tanθ cosθ 7. sin(A+ B) = sin AcosB+sinBcosA 16. cscθ = 1 8. sin(AB) =sin AcosBsinBcosA sinθ 9. cos(A+B)=cosAcosBsinAsinB 17. cos(π θ) = sinθ 2 10. cos(A B) = cos AcosB+sin AsinB 18. sin(π θ) = cosθ 2 11. sin 2θ = 2sinθ cosθ 12. cos2θ = cos2θ sin2θ = 2cos2θ 1=12sin2θ Integration Formulas Definition of a Improper Integral b ∫ f (x) dx is an improper integral if a 1. f becomes infinite at one or more points of the interval of integration, or 2. one or both of the limits of integration is infinite, or 3. both (1) and (2) hold. 1. ∫a dx = ax +C 12. ∫cscx dx = lncscx cot x +C xn+1 13. sec2 x dx = tan x +C 2. ∫ xn dx = +C, n ≠ 1 ∫ n+1 14. ∫secxtan x dx = secx +C 3. 1dx=ln x + C ∫ x 15. ∫csc2 x dx = cot x +C 4. ∫ex dx = ex +C 16. ∫cscxcot x dx = cscx +C ax 2 5. ∫axdx = +C 17. ∫ tan x dx = tan x x +C lna dx 1 x 6. ∫lnx dx = xlnx x+C 18. ∫ a2 + x2 = a Arctana+C 7. ∫sin x dx = cosx +C 19. dx = Arcsin x+C ∫ 2 2 a 8. ∫cosx dx = sin x +C a x 9. ∫tanx dx = lnsecx +C or lncosx +C 20. ∫ dx = 1 Arcsec x +C = 1 Arccos a +C x x2 a2 a a a x 10. ∫cot x dx = lnsin x +C 11. ∫secx dx = lnsecx + tan x +C Formulas and Theorems 1a. Definition of Limit: Let f be a function defined on an open interval containing c (except possibly at c ) and let L be a real number. Then lim f (x) = L means that for each ε > 0 there x →a exists a δ > 0 such that f (x) L < ε whenever 0 < x c < δ . 1b. A function y = f (x) is continuous at x = a if i). f(a) exists ii). lim f (x) exists x →a iii). lim = f(a) x →a 4. Intermediate-Value Theorem [] A function y = f (x) that is continuous on a closed interval a,b takes on every value between f (a) and f (b) . [] Note: If f is continuous on a,b and f (a) and f (b) differ in sign, then the equation f (x) = 0 has at least one solution in the open interval (a,b). 5. Limits of Rational Functions as x → ±∞ i). lim f(x)=0 if the degree of f(x)< the degree of g(x) x →±∞g(x) x2 2x Example: lim 3 =0 x →∞ x +3 ii). lim f(x)is infinite if the degrees of f(x) > the degree of g(x) x→±∞ g(x) x3 +2x Example : lim 2 =∞ x →∞ x 8 iii). lim f(x)is finite if the degree of f(x) = the degree of g(x) x→±∞ g(x) 2x2 3x+2 2 Example: lim 2 =5 x →∞ 10x5x 6. Average and Instantaneous Rate of Change ( ) ( ) i). Average Rate of Change: If x , y and x , y are points on the graph of 0 0 1 1 y = f (x), then the average rate of change of y with respect to x over the interval f (x ) f (x ) y y ∆y []x , x is 1 0 = 1 0 = . 0 1 x x x x ∆x 1 0 1 0 () ii). Instantaneous Rate of Change: If x0, y0 is a point on the graph of y = f (x), then ′ the instantaneous rate of change of y with respect to x at x0 is f (x0) . ′ f (x + h) f (x) 7. f (x) = lim h h→0
no reviews yet
Please Login to review.