135x Filetype PDF File size 0.03 MB Source: www.math.wsu.edu
MULTIPLE INTEGRALS CHANGEofVARIABLES Change of Variables for Double Integrals • assume C1 transformations for (u,v) → (x,y) x = g(u,v), y = h(u,v) for (u,v) ∈ S and (x,y) ∈ R; • define Jacobian for transformation, by determinant ∂x ∂x ∂(x,y) ∂u ∂v ∂x∂y ∂x∂y =∂y ∂y = − ; ∂(u,v) ∂u ∂v ∂u∂v ∂v∂u • transformed double integral formula is ZZ ZZ ∂(x,y) f(x,y)dA = f(g(u,v),h(u,v)) dudv. R S ∂(u,v) TRIPLE INTEGRALS CHANGEofVARIABLES Change of Variables for Triple Integrals • assumeC1 transformationsfor(u,v,w) → (x,y,z) x = g(u,v,w), y = h(u,v,w), z = k(u,v,w) for (u,v,w) ∈ S and (x,y,z) ∈ R; • define Jacobian for transfomation, by determinant ∂x ∂x ∂x ∂u ∂v ∂w ∂(x,y,z) ∂y ∂y ∂y = ∂(u,v,w) ∂u ∂v ∂w ∂z ∂z ∂z ∂u ∂v ∂w = ∂x∂y∂z + ∂z∂x∂y + ∂y∂z∂x ∂u∂v∂w ∂u∂v∂w ∂u∂v∂w −∂z∂y∂x −∂y∂x∂z −∂x∂z∂y; ∂u∂v∂w ∂u∂v∂w ∂u∂v∂w • transformed triple integral formula is ZZZ f(x,y,z)dV R ZZZ ∂(x,y,z) = f(g(u,v,w),h(u,v,w),k(u,v,w) dudvdw. S ∂(u,v,w) 2
no reviews yet
Please Login to review.