163x Filetype PDF File size 0.39 MB Source: www.math.ucla.edu
Real Analysis and Multivariable Calculus: Graduate Level Problems and Solutions Igor Yanovsky 1 Real Analysis and Multivariable Calculus Igor Yanovsky, 2005 2 Disclaimer: This handbook is intended to assist graduate students with qualifying examination preparation. Please be aware, however, that the handbook might contain, and almost certainly contains, typos as well as incorrect or inaccurate solutions. I can not be made responsible for any inaccuracies contained in this handbook. Real Analysis and Multivariable Calculus Igor Yanovsky, 2005 3 Contents 1 Countability 5 2 Unions, Intersections, and Topology of Sets 7 3 Sequences and Series 9 4 Notes 13 4.1 Least Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Completeness 14 6 Compactness 16 7 Continuity 17 7.1 Continuity and Compactness . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Sequences and Series of Functions 19 8.1 Pointwise and Uniform Convergence . . . . . . . . . . . . . . . . . . . . 19 8.2 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.3 Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.3.1 Arzela-Ascoli Theorem . . . . . . . . . . . . . . . . . . . . . . . . 21 9 Connectedness 21 9.1 Relative Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9.2 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9.3 Path Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 10 Baire Category Theorem 24 11 Integration 26 11.1 Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11.2 Existence of Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . 27 11.3 Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . 27 12 Differentiation 30 12.1 R → R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12.1.1 The Derivative of a Real Function . . . . . . . . . . . . . . . . . 30 12.1.2 Rolle’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12.1.3 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 30 12.2 R → Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12.3 Rn → Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12.3.1 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 12.3.2 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 35 12.3.3 ∂ (∂f) = ∂ (∂f) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ∂x ∂y ∂y ∂x 12.4 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 12.5 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Real Analysis and Multivariable Calculus Igor Yanovsky, 2005 4 13 Successive Approximations and Implicit Functions 41 13.1 Contraction Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13.2 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13.3 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 44 13.4 Differentiation Under Integral Sign . . . . . . . . . . . . . . . . . . . . . 46
no reviews yet
Please Login to review.