jagomart
digital resources
picture1_Calculus Pdf 170505 | Real Analysis


 163x       Filetype PDF       File size 0.39 MB       Source: www.math.ucla.edu


File: Calculus Pdf 170505 | Real Analysis
real analysis and multivariable calculus graduate level problems and solutions igor yanovsky 1 real analysis and multivariable calculus igor yanovsky 2005 2 disclaimer this handbook is intended to assist graduate ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
         Real Analysis and Multivariable Calculus: Graduate Level
                    Problems and Solutions
                        Igor Yanovsky
                           1
                  Real Analysis and Multivariable Calculus              Igor Yanovsky, 2005         2
                  Disclaimer:    This handbook is intended to assist graduate students with qualifying
                  examination preparation. Please be aware, however, that the handbook might contain,
                  and almost certainly contains, typos as well as incorrect or inaccurate solutions. I can
                  not be made responsible for any inaccuracies contained in this handbook.
                     Real Analysis and Multivariable Calculus                       Igor Yanovsky, 2005              3
                     Contents
                     1 Countability                                                                                  5
                     2 Unions, Intersections, and Topology of Sets                                                   7
                     3 Sequences and Series                                                                          9
                     4 Notes                                                                                       13
                         4.1   Least Upper Bound Property . . . . . . . . . . . . . . . . . . . . . . . .           13
                     5 Completeness                                                                                14
                     6 Compactness                                                                                 16
                     7 Continuity                                                                                  17
                         7.1   Continuity and Compactness . . . . . . . . . . . . . . . . . . . . . . . .           18
                     8 Sequences and Series of Functions                                                           19
                         8.1   Pointwise and Uniform Convergence . . . . . . . . . . . . . . . . . . . .            19
                         8.2   Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .         19
                         8.3   Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       21
                               8.3.1   Arzela-Ascoli Theorem . . . . . . . . . . . . . . . . . . . . . . . .        21
                     9 Connectedness                                                                               21
                         9.1   Relative Topology      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   21
                         9.2   Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        21
                         9.3   Path Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         23
                     10 Baire Category Theorem                                                                     24
                     11 Integration                                                                                26
                         11.1 Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        26
                         11.2 Existence of Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . .         27
                         11.3 Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . .             27
                     12 Differentiation                                                                             30
                         12.1 R → R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       30
                               12.1.1 The Derivative of a Real Function . . . . . . . . . . . . . . . . .           30
                               12.1.2 Rolle’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . .         30
                               12.1.3 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . .            30
                         12.2 R → Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        31
                         12.3 Rn → Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         31
                               12.3.1 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        34
                               12.3.2 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . .            35
                               12.3.3   ∂ (∂f) = ∂ (∂f) . . . . . . . . . . . . . . . . . . . . . . . . . . .       36
                                       ∂x ∂y       ∂y ∂x
                         12.4 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        37
                         12.5 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        40
                     Real Analysis and Multivariable Calculus                        Igor Yanovsky, 2005              4
                     13 Successive Approximations and Implicit Functions                                            41
                         13.1 Contraction Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . .           41
                         13.2 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . .           41
                         13.3 Implicit Function Theorem         . . . . . . . . . . . . . . . . . . . . . . . . .    44
                         13.4 Differentiation Under Integral Sign . . . . . . . . . . . . . . . . . . . . .           46
The words contained in this file might help you see if this file matches what you are looking for:

...Real analysis and multivariable calculus graduate level problems solutions igor yanovsky disclaimer this handbook is intended to assist students with qualifying examination preparation please be aware however that the might contain almost certainly contains typos as well incorrect or inaccurate i can not made responsible for any inaccuracies contained in contents countability unions intersections topology of sets sequences series notes least upper bound property completeness compactness continuity functions pointwise uniform convergence normed vector spaces equicontinuity arzela ascoli theorem connectedness relative path baire category integration riemann integral existence fundamental dierentiation r derivative a function rolle s mean value rm rn chain rule f x y taylor lagrange multipliers successive approximations implicit contraction mappings inverse under sign...

no reviews yet
Please Login to review.