jagomart
digital resources
picture1_Calculus Pdf 169876 | Poly Scaf


 145x       Filetype PDF       File size 0.82 MB       Source: membres-ljk.imag.fr


File: Calculus Pdf 169876 | Poly Scaf
stochastic calculus and applications to finance scaf pierre etore master 2 msiam track data science year 2019 2020 2 contents 1 stochastic processes and brownian motion 5 1 1 stochastic ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
         Stochastic Calculus and Applications to Finance (SCAF)
                         ´  ´
                      Pierre ETORE
                 Master 2 MSIAM, track Data Science
                      Year 2019-2020
                              2
                   Contents
                   1 Stochastic processes and Brownian motion                                                                          5
                       1.1   Stochastic processes: general definitions and properties . . . . . . . . . . . . . . . . . . . .            5
                       1.2   Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         7
                       1.3   Continuous time martingales: first definitions . . . . . . . . . . . . . . . . . . . . . . . . .             8
                       1.4   Afundamental stochastic process: the Brownian motion . . . . . . . . . . . . . . . . . . .                 9
                   2 Processes of finite variation and quadratic variation of martingales                                              17
                       2.1   Functions of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       17
                       2.2   Processes of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       18
                       2.3   Quadratic variation of martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         20
                   3 Stochastic integration and Itˆo formula                                                                          23
                       3.1   Stochastic integration     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   23
                       3.2   Itˆo formula   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   27
                   4 L´evy and Girsanov theorems                                                                                      31
                       4.1   Exponential martingale and theorem of L´evy . . . . . . . . . . . . . . . . . . . . . . . . .            31
                       4.2   Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       32
                   5 Applications to Finance, Stochastic Differential Equations and link with Partial Dif-
                       ferential Equations                                                                                            37
                       5.1   Introduction and motivations, one-dimensional Black and Scholes model . . . . . . . . . .                37
                       5.2   Adigression on SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         38
                       5.3   Self-financing portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      39
                       5.4   Risk -neutral probability measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        40
                       5.5   Construction of the self financing replicating portfolio, pricing and hedging formulae, link
                             with PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       41
                   6 Appendix                                                                                                         43
                       6.1   Functions of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       43
                   Bibliography                                                                                                       45
                                                                             3
                              4
The words contained in this file might help you see if this file matches what you are looking for:

...Stochastic calculus and applications to finance scaf pierre etore master msiam track data science year contents processes brownian motion general denitions properties markov continuous time martingales rst afundamental process the of nite variation quadratic functions integration it o formula l evy girsanov theorems exponential martingale theorem dierential equations link with partial dif ferential introduction motivations one dimensional black scholes model adigression on sde self nancing portfolio risk neutral probability measure construction replicating pricing hedging formulae pde appendix bibliography...

no reviews yet
Please Login to review.