145x Filetype PDF File size 0.82 MB Source: membres-ljk.imag.fr
Stochastic Calculus and Applications to Finance (SCAF) ´ ´ Pierre ETORE Master 2 MSIAM, track Data Science Year 2019-2020 2 Contents 1 Stochastic processes and Brownian motion 5 1.1 Stochastic processes: general definitions and properties . . . . . . . . . . . . . . . . . . . . 5 1.2 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Continuous time martingales: first definitions . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Afundamental stochastic process: the Brownian motion . . . . . . . . . . . . . . . . . . . 9 2 Processes of finite variation and quadratic variation of martingales 17 2.1 Functions of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Processes of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Quadratic variation of martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Stochastic integration and Itˆo formula 23 3.1 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Itˆo formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 L´evy and Girsanov theorems 31 4.1 Exponential martingale and theorem of L´evy . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Girsanov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Applications to Finance, Stochastic Differential Equations and link with Partial Dif- ferential Equations 37 5.1 Introduction and motivations, one-dimensional Black and Scholes model . . . . . . . . . . 37 5.2 Adigression on SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Self-financing portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4 Risk -neutral probability measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.5 Construction of the self financing replicating portfolio, pricing and hedging formulae, link with PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Appendix 43 6.1 Functions of finite variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Bibliography 45 3 4
no reviews yet
Please Login to review.