196x Filetype PDF File size 0.38 MB Source: cds.cern.ch
Appendix Elements of Tensor Calculus A. Vector and Tensor Designations The following tensor designations are used in the book: a tensor of zero rank (scalar), a ðakÞ tensor of first rank (vector), AðAkjÞ tensor of second rank, UðdkjÞ unit tensor (dkj — Kronecker symbol), J ðJijkÞ tensor of third rank. Simmetric and Antisymmetric Tensors Simmetric and antisymmetric tensors are defined as follows: simmetric: A¼Atransp ðA ¼ A Þ (A.1) kj jk antisymmetric: A¼Atransp ðA ¼A Þ (A.2) kj jk Trace of tensor is defined as the sum of its diagonal elements: SpA¼XAkk (A.3) k M.Y. Marov and A.V. Kolesnichenko, Turbulence and Self-Organization: 607 Modeling Astrophysical Objects, Astrophysics and Space Science Library 389, DOI10.1007/978-1-4614-5155-6, # Springer Science+Business Media New York 2013 608 Elements of Tensor Calculus Scalar and Tensor (Internal) Product Scalar product: of two vectors ab¼Pakbk ðÞscalar k of vector and tensor Ab¼PAjkbk ðÞvector k of tensor and vector bA¼PbkAkj ðÞvector (A.4) k of two tensors AB¼PAjkBki ðÞtensor k Dual scalar product oftensors: A:B¼XAjkBkj ðscalarÞ (A.5) k;j Internal (dyad) tensor product: of two vectors ðabÞjk ¼ ajbk ðÞtensor of second rank of vector and tensor ðaBÞijk ¼ aiBjk ðÞtensor of third rank (A.6) of tensor and vector ðBaÞijk ¼ Bijak ðÞtensor of third rank of two tensors ðABÞijkl ¼ AijBkl ðÞtensor of fourth rank : Vector product of twovectors and tensor andvector: ða bÞk ¼ Xeijkaibj ðvectorÞ; ðBaÞik ¼ XejklBijal ðtensorÞ (A.7) i;j j;l where symbol of permutation eijk takes the values: 8þ1under even permutation of indexes ði:e: 123; 231; 312Þ > eijk ¼ <1 under odd permutationof indexes ði:e: 321; 132; 213Þ (A.8) > :0underrecurring indexes: B. Cylindrical Coordinates Expressions for the different operators used in the equations of heterogeneous mechanics are represented here, for the convenience, in the cylindrical coordinate system r;’;z (in axisymmetric case, @=@’ ¼ 0). Here are the expressions of operators acting on: Elements of Tensor Calculus 609 (1) scalars: dB@BþurB¼@Bþu @Bþu @B; rB¼i @Bþi @B (B.1) dt @t @t r @r z @z r @r z @z 1 @ @B @2B r2B¼ r þ ; (B.2) r @r @r @z2 (2) vectors: rA¼1@ðrArÞþ@Az; (B.3) r @r @z @A @A @A A A @A @A @A rA¼ii r þi i ’ þi i z þ i i ’ þi i r þ i i r þ i i ’ þi i z ; r r @r r ’ @r r z @r ’ r r ’ ’ r z r @z z ’ @z z z @z (B.4) (3) dyads: P ¼i i P þi i P þi i P þi i P þi i P þi i P þi i P þii P þiiP ; (B.5) r r rr r ’ r’ r z rz ’ r ’r ’ ’ ’’ ’ z ’z z r zr z ’ z’ z z zz 1 @ðrP Þ @P P’’ rP¼i rr zr r r @r @z r 1 @ðrP Þ @P P 1 @ðrP Þ @P þi r’ þ z’ þ ’r þi rz þ zz : (B.6) ’ r @r @z r z r @r @z Then for strain tensor and strain velocity tensor we obtain, respectively: 1 D ruþðruÞtransp 2 ¼i i @ur þi i 1 @u’ u’ þi i 1 @uz þ@ur r r @r r ’ 2 @r r r z 2 @r @z þi i 1 @u’u’ þi i ur þi i 1 @u’ ’ r 2 @r r ’ ’ r ’ z 2 @z þii 1 @uzþ@ur þi i 1 @u’þi i @uz; (B.7) z r 2 @r @z z ’ 2 @z z z @z D1 ruþðruÞtransp 1Iru 2 3 ¼i i @ur 1Iru þi i 1 @u’u’ þi i 1 @uzþ@ur r r @r 3 r ’ 2 @r r r z 2 @r @z (B.8) þi i 1 @u’ u’ þi i ur 1Iru þi i 1 @u’ ’ r 2 @r r ’ ’ r 3 ’ z 2 @z þi i 1 @uz þ@ur þi i 1 @u’ þi i @uz 1Iru : z r 2 @r @z z ’ 2 @z z z @z 3 610 Elements of Tensor Calculus Double-point Gibbs multiplication serves as operator widely used in hydrody- namics. If, following the Gibbs notations,a;b;c;dare arbitrary vectors, thenab : cd ¼ðacÞðbdÞ. In particular, for unit vectors we have: i i : i i ¼i iÞði i Þ¼d d ; (B.9) j k l m j l k m jl km and for two dyads we have: ! ! ð1Þ ð2Þ XX ð1Þ XX ð2Þ D :D ¼ ijikD : ilimD jk lm j k l m ¼XXXXdd Dð1ÞDð2Þ¼XXDð1ÞDð2Þ; (B.10) jl km jk lm jk jk j k l m j k or 2 2 2 2 2 2 2 2 2D:D¼2D þ2D þD þ4D þ4D þ4D ðruÞ : (B.11) rr ’’ zz r’ rz z’ 3
no reviews yet
Please Login to review.