jagomart
digital resources
picture1_Surface Integral Pdf 169762 | Mathematics2


 165x       Filetype PDF       File size 0.51 MB       Source: mdg.vsb.cz


File: Surface Integral Pdf 169762 | Mathematics2
vsb technical university of ostrava department of mathematics and descriptive geometry mathematics ii pavel kreml ostrava contents 1 indefinite integrals 3 1 1 the indefinite integral 3 1 2 computation ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
          VŠB –TECHNICAL UNIVERSITY OF OSTRAVA 
         Department of Mathematics and Descriptive Geometry 
                              
                              
                                
                              
                              
                              
                              
                   MATHEMATICS II 
        
        
        
        
        
        
        
        
        
                        Pavel Kreml 
        
        
        
        
        
        
        
        
        
        
        
                          Ostrava 
                    CONTENTS 
                    1.       INDEFINITE INTEGRALS ................................................................................. 3 
                    1.1.     The Indefinite Integral .............................................................................................................................. 3 
                    1.2.     Computation of Integrals ......................................................................................................................... 3 
                    1.3.     Some Properties of the Indefinite Integral .............................................................................................. 5 
                    1.4.     Substitution ................................................................................................................................................ 5 
                    1.4.     Integration by Parts .................................................................................................................................. 7 
                    2.       DEFINITE INTEGRALS ..................................................................................... 9 
                    2.1.     The Definite Integral ................................................................................................................................. 9 
                    2.2.     The Area Problem and the Definite Integral ........................................................................................ 10 
                    2.3.     Rules for Definite Integrals .................................................................................................................... 11 
                    2.4.     Integration by Parts in Definite Integrals ............................................................................................. 12 
                    2.5.     Substitution in Definite Integrals ........................................................................................................... 12 
                    2.6.     Applications of Integration ..................................................................................................................... 13 
                               Finding Areas under Curves .................................................................................................................. 13 
                               Area Between Two Curves .................................................................................................................... 14 
                               Volumes of Revolution .......................................................................................................................... 15 
                               The Length of a Curve ........................................................................................................................... 16 
                               Area of Surface of Revolution ............................................................................................................... 17 
                    3.       DIFFERENTIAL EQUATIONS ........................................................................ 18 
                    3.1.     Introduction ............................................................................................................................................. 18 
                    3.2.     Separable Equations ............................................................................................................................... 20 
                    3.3.     Linear Differential Equations ................................................................................................................ 21 
                               Homogeneous Linear Differential Equation .......................................................................................... 21 
                               Nonhomogeneous Linear Differential Equation .................................................................................... 23 
                               Method for Solving Linear Differential Equation .................................................................................. 23 
                                                                  th
                    3.4.     Linear Differential Equations n  order ................................................................................................ 25 
                    3.5.     Homogeneous Equations with Constant Coefficients .......................................................................... 26 
                    3.6.     Homogeneous 2nd Order Equations with Constant Coefficients ......................................................... 27 
                               I. Real Distinct Roots: ............................................................................................................................ 27 
                               II. Repeated Roots: ................................................................................................................................ 27 
                               III. Complex Conjugate Roots: .............................................................................................................. 28 
                    3.6.     Nonhomogeneous Equations with Constant Coefficients .................................................................... 29 
                               Method of Variation of Parameters ........................................................................................................ 30 
                               Method of Undetermined Coefficients .................................................................................................. 32 
                    LITERATURE ...........................................................................................................  35 
                     
                     
                     
                                                                                 - 1 - 
The words contained in this file might help you see if this file matches what you are looking for:

...Vsb technical university of ostrava department mathematics and descriptive geometry ii pavel kreml contents indefinite integrals the integral computation some properties substitution integration by parts definite area problem rules for in applications finding areas under curves between two volumes revolution length a curve surface differential equations introduction separable linear homogeneous equation nonhomogeneous method solving th n order with constant coefficients nd i real distinct roots repeated iii complex conjugate variation parameters undetermined literature...

no reviews yet
Please Login to review.