147x Filetype PDF File size 0.09 MB Source: crm.umontreal.ca
MACF491(MAST679): Stochastic Calculus and Finance Winter 2016 Lecture times: TBC Lecture location: TBC Textbook: Stochastic Calculus for Finance II: Continuous Time Models by Steven Shreve. Springer Finance Textbook. Topics covered: This course will cover an introduction to stochastic calculus and applications to mathematical finance. See overleaf for a more precise schedule. Assessment: Grades in this course will be determined by a mid-term, a final exam and regular assignments. Your final mark will be composed as follows: • assigments TBC% • midterm TBC% • final exam TBC% 1 Schedule week mathematics finance book 1 probability spaces, random variables, – Ch.1 expectation. 2 Convergence theorems. Change of – Ch. 1, 2 measure, Radon-Nikodym´ derivative. Independence. 3 Conditional Expectation. Filtrations, – Ch. 2 martingales. 4 Brownian motion. Discretisations, – Ch. 3 Brownianmotionasamartingale. Ex- ponential martingale. 5 BrownianmotionasaMarkovprocess. – Ch. 3 First passage time. Reflection princi- ple, joint distribution of Brownian mo- tion and its maximum. 6 Quadratic variation of Brownian mo- Volatility of geometric BM. Ch. 3, 4 tion. The Itˆo stochastic integral. Itˆo isometry. 7 Itˆo processes. Itˆo’s formula. – Ch. 4 8 The Black-Scholes equation. Stochas- Pricing European (‘vanilla’) options. Ch. 4 tic calculus in higher dimensions. Put-call parity. L´evy’s theorem. 9 Girsanov’s theorem. Martingale rep- The risk-neutral measure. Pric- Ch. 5 resentation theorem. ing derivative securities for European calls. 10 Girsanov and Martingale representa- Multimarket models. Fundamental Ch. 5 tion theorem in higher dimensions. theorems of asset pricing 11 SPDEs. Markov property. Feynman- Interest rate model. Asian options Ch. 6 Kac formula. 12 – Exotic options: Knock-out and look- Ch. 7 back options. 13 Stochastic calculus for jump processes European options in a jump model Ch. 11 2
no reviews yet
Please Login to review.