163x Filetype PDF File size 1.08 MB Source: warwick.ac.uk
MA231Vector Analysis Stefan Adams 2010, revised version from 2007, update 02.12.2010 Contents 1 Gradients and Directional Derivatives 1 m n 2 Visualisation of functions f: R → R 4 2.1 Scalar fields, n = 1 . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Vector fields, n > 1 . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Curves and Surfaces . . . . . . . . . . . . . . . . . . . . . . . 10 3 Line integrals 16 3.1 Integrating scalar fields . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Integrating vector fields . . . . . . . . . . . . . . . . . . . . . 17 4 Gradient Vector Fields 20 4.1 FTCfor gradient vector fields . . . . . . . . . . . . . . . . . . 21 4.2 Finding a potential . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Radial vector fields . . . . . . . . . . . . . . . . . . . . . . . . 30 5 Surface Integrals 33 5.1 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3 Kissing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 Divergence of Vector Fields 45 6.1 Flux across a surface . . . . . . . . . . . . . . . . . . . . . . . 45 6.2 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7 Gauss’s Divergence Theorem 52 8 Integration by Parts 59 9 Green’s theorem and curls in R2 61 9.1 Green’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 10 Stokes’s theorem 72 10.1 Stokes’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.2 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 78 11 Complex Derivatives and M¨obius transformations 80 12 Complex Power Series 89 13 Holomorphic functions 99 14 Complex integration 103 15 Cauchy’s theorem 107 16 Cauchy’s formulae 117 16.1 Cauchy’s formulae . . . . . . . . . . . . . . . . . . . . . . . . 117 16.2 Taylor’s and Liouville’s theorem . . . . . . . . . . . . . . . . . 120 17 Real Integrals 122 18 Power series for Holomorphic functions 126 18.1 Power series representation . . . . . . . . . . . . . . . . . . . . 126 18.2 Power series representation - further results . . . . . . . . . . 128 19 Laurent series and Cauchy’s Residue Formula 130 19.1 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 19.2 Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 ii Preface Health Warning: These notes give the skeleton of the course and are not a substitute for attending lectures. They are meant to make note-taking easier so that you can concentrate on the lectures. An important part in vector analysis are figures and pictures. These will not be contained in these notes. For any figure which appears on the blackboard in my lectures I leave some empty space with a reference number which coincides with the number I am using in the lectures. You can fill the diagrams and figures by your own. These notes grew out of hand written notes from Jochen Voß who gave this course 2005 and 2006. I thank him very much for letting me using his notes. Any remarks and suggestions for improvements would help to create better notes for the next year. Stefan Adams Motivation What is Vector Analysis? In analysis differentiation and integration were mostly considered in one di- mension. Vector analysis generalises this to curves, surfaces and volumes in Rn,n ∈ N. As an example consider the “normal” way to calculate a one dimensional integral: You may find a primitive of a function f and use the fundamental theorem of calculus, i.e. for f = F′ we get Z bf(x)dx = F(b)−F(a). a The value of the integral can be determined by looking at the boundary points of the interval [a,b]. Does this also work in higher dimensions? The answer is given by Gauss’s divergence theorem. Notation One of the main problems in vector analysis is that there are many books with all possible different notations. During the whole course I outline alter- native notations in use. It is one of the objectives to acquaint you with the different notations and symbols. Note that most of the material originated from physics and hence many books are using notations and symbols known by people in physics. iii
no reviews yet
Please Login to review.