jagomart
digital resources
picture1_Calculus Pdf 169375 | Multivariable Calculus


 170x       Filetype PDF       File size 0.08 MB       Source: tea.texas.gov


File: Calculus Pdf 169375 | Multivariable Calculus
approved innovative course course multivariable calculus peims code n1110018 abbreviation multcal grade level s 11 12 number of credits 1 0 course description multivariable calculus takes the concepts learned in ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
       Multivariable Calculus
          In thermodynamics, we will frequently deal
          with functions of more than one variable
            e.g., PPT,,Vn,  UUT,V,n,  UUT,,Pn                    U = energy
                         n = # moles
          extensive variable:  depends on the size of the system
          intensive variable:  independent of the size of the system
             V, n are extensive, 
             P, T, molar volume V/n are intensive
          change volume at fixed T, n
            pressure changes
                     P
                    
               dP          dV
                    
                     V
                    
                         nT,
                                    these variables are             cylinder with piston
                                    held constant
          Suppose we have an ideal gas
               PV nRT
                PnRT
               
                         
                2
                VV
               
                      nT,                                subscripts refer
                PnR
                                                       to variables that
                         
               
                TV                                      are held constant
               
                     Vn,
                PRT
               
                         
               
                nV
               
                     VT,
           now suppose we want to see how Pchanges when both V and Tchange
                             PP
                                                                    Note that this is fully consistent with 
                    dPdV                              dT
                                                                    Taylor‐series expansions
                             V                T
                            
                                   Tn,,Vn
             If n changes as well
                                          P
                                         
                                                   dn
                     need to add a                      term
                                         
                                           n
                                         
                                                TV,
     In general,
        yy    x,,xx
              
                12 n
              n   y
                
           dx x
        dy   i, '                 hold fixed all
                  n
             i1 
                      x'             variables except x
                                                       i
      Ideal gas
                 PPP
                 
          dP           dT            dV           dn
             
                 
                  TVn
                 
                 
                     nV,,Tn                    T,V
               nR       nRT       RT
          dPdT             dV dn
                          2
                VVV
        for small finite changes
                   nR      nRT       RT
             PT V n
                             2
                   VVV
     These equations are most useful when we don't have
     an analytical function for the quantity of interest.
     Consider
       UU (,TP,n)
              UUU
               
       dU             dT           dP            dn
           
               
                TPn
              
               
                   Pn,,Tn                     T,P
         The derivatives are often available experimentally.
       We can also write
         UU    T,,Vn
                
                UUU
                 
         dU             dT           dV            dn
             
                 
                TVn
                 
                     Vn,,Tn                     T,V
                                    UU
                                  
             Note, in general,             
                                  
                                    TT
                                  
                                        P,,nVn
The words contained in this file might help you see if this file matches what you are looking for:

...Approved innovative course multivariable calculus peims code n abbreviation multcal grade level s number of credits description takes the concepts learned in single variable and extends them to multiple dimensions topics discussed include vector algebra applications dot cross product equations lines planes surfaces space converting between rectangular cylindrical spherical coordinates continuity differentiation integration valued functions application such as curvature arc length speed velocity acceleration limits derivatives tangent normal applying double triple integrals find area volume surface mass center moments inertia fields finding curl divergence line conservative conservation energy green theorem parametric including vectors areas orientation a stokes this is designed an additional math for those students who have successfully completed ap bc interest continuing their mathematical studies while high school essential knowledge skills introduction will build on mathematics whic...

no reviews yet
Please Login to review.