jagomart
digital resources
picture1_9f91babaa26e03faba6eddc1b302575e Mit18 02sc Supprobsol2


 173x       Filetype PDF       File size 0.44 MB       Source: ocw.mit.edu


File: 9f91babaa26e03faba6eddc1b302575e Mit18 02sc Supprobsol2
2 partial dierentiation 2a functions and partial derivatives 2a 1 in the pictures below not all of the level curves are labeled in c and d the picture is the ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                                                                                                      2.              Partial  Differentiation 
                                                                                                                                                 2A.  Functions  and  Partial  Derivatives 
                                                                               2A-1  In  the  pictures  below,  not  all  of  the  level  curves  are  labeled.  In  (c)  and  (d),  the 
                                                                               picture  is  the  same,  but  the  labelings  are  different.  In  more  detail: 
                                                                                        b)  the  origin  is  the  level  curve  0;  the  other  two  unlabeled  level  curves  are  .5  and  1.5; 
                                                                                        c)  on  the  left,  two  level  curves  are  labeled;  the  unlabeled  ones  are  2  and  3;  the  origin  is                                                                                                                                                                                               a 
                                                                               the  level  curve  0; 
                                                                                        d)  on the right, two level  curves are labeled;  the unlabeled  ones are  −1 and  −2;  the origin 
                                                                               is  the  level  curve  1; 
                                                                                        The  crude  sketches  of  the  graph  in  the  first  octant  are  at  the  right.                                                                                                                                                                                                                            b 
                                                                                                                                                                                             2
                                                                                                                                          -2

                                                                                                                                                                                            1
                                        4
              1                 0
             -3
                 2
1
                         -1
 1
                                                                                                                                                      1
                                                                                                                                                                  0
                                2
                                                                                                                                                    0
                                                                                                                                                                     0
 -1
                                                                     c 
                                                                                                        3                                                                                                                                                                                                                               -2

                                                                                                                                      2             1

                                                                                                                   a                                                                     b                                                               c, d                                                                    e 
                                                                                                                                         2                      2                               3                                                                                     1                                    x                                                                         d
                                                                               2A-2  a)  fx  = 3x y −3y ; fy  =  x −6xy  +4y                                                                                                                             b)          zx  =  y;                     zy  =  −y2
                                                                                            c)  fx  = 3cos(3x  + 2y);                                                     fy  = 2cos(3x  + 2y) 
                                                                                                                                                 2                                            2                                                                                                2x                                                x 
                                                                                                     d)  fx  = 2xyex  y;                                        fy  =  x2ex  y                                       e)  zx  = ln(2x  +  y) +                                                                ;          zy  = 
                                                                                                                                                                                                                                                                                        2x  +  y                                         2x  +  y 
                                                                                                                                                                               3                               2                      2 
                                                                                                     f)  fx  = 2xz;                              fy  =  −2z ;                             fz  =  x − 6yz
                                                                               2A-3  a)  both  sides  are  mnxm−1yn−1 
                                                                                                      b)  fx  =                                y               ;        fxy  = (fx)y  =                                         x  − y                ;         fy  =                       −x                 ;        fyx  =  −(y −x). 
                                                                                                                                    (x  +  y)2                                                                              (x  +  y)3                                              (x  +  y)2                                                  (x  +  y)3 
                                                                                                      c)  f             =  −2xsin(x2 + y); f                                                         =(f ) =  −2xcos(x2 + y); 
                                                                                                                  x                                               2                         xy                     x y                  2 
                                                                                                                          fy  =  −sin(x +  y);                                              fyx  =  −cos(x +  y) ·  2x: 
                                                                                                     d)  both  sides  are  f′ (x)g ′ (y). 
                                                                               2A-4  (fx)y  =  ax+6y;                                                           (fy)x  = 2x+6y;  therefore  fxy  =  fyx  ⇔ a  = 2.                                                                                                               By  inspection, 
                                                                               one  sees  that  if  a  = 2,                                                f(x;y) =  x2y +3xy2  is  a  function  with  the  given  f                                                                                                                 and  f . 
                                                                                                                                                                                                                                                                                                                              x                       y
                                                                               2A-5 
                                                                               a)         wx  =  aeax  sinay;                                           wxx  =  a2eax  sinay; 
                                                                                          wy  =  eaxacosay;                                             wyy  =  eaxa2(−sinay);                                                                  therefore  wyy  =  −wxx. 
                                                                                                                                                      2x                                                2(y2 −x2)
                                                                               b)          We  have  wx  =                                                             ;         wxx  =                                                  .        If  we  interchange  x  and  y,  the  function 
                                                                                                                                              x2 +  y2                                                  (x2 +  y2)2 
                                                                               w  = ln(x2 +  y2) remains  the  same,  while  w                                                                                                     gets  turned  into  w                                            ;      since  the  interchange 
                                                                                                                                                                                                                         xx                                                                  yy
                                                                               just  changes  the  sign  of  the  right  hand side,  it  follows  that  wyy  =  −wxx. 
                                                                                                                                        2B.  Tangent  Plane;  Linear  Approximation 
                                                                                                                                      2 
                                                                               2B-1  a)  zx  =  y ;                                               zy  = 2xy;  therefore  at  (1,1,1),  we  get  zx  = 1;                                                                                                       zy  =  2,  so  that  the 
                                                                               tangent plane is  z  = 1 + (x  − 1) + 2(y − 1),  or  z  =  x  + 2y − 2. 
                                                                                                                                                                                                                             0 
                                                                                    2.   PARTIAL DIFFERENTIATION                                                                1 
                                                                     2    2 
                                                  b)  wx  =  −y =x ;            wy  = 2y=x; therefore  at (1,2,4),  we get  wx  =  −4;                           wy  =  4,  so 
                                      that the tangent plane is  w  = 4 − 4(x  − 1) + 4(y − 2),  or  w  =  −4x  + 4y. 
                                                                    x               x                                                                           y
                                      2B-2  a)  zx  =  �  2                2   =  z;        by  symmetry (interchanging  x  and  y),  zy  =  z ;  then  the 
                                                                 x + y
                                                                             x0                   y0                             x0        y0                   2      2       2 
                                      tangent plane is  z  =  z0 +  z0  (x−x0)+ z0 (y−y0),  or  z  =  z0  x+  z0 y  ,  since  x0 +y0 =  z0.
                                                  b)  The line is  x  =  x0t;  y  =  y0t;  z  =  z0t;  substituting  into  the  equations  of  the  cone 
                                      and  the  tangent  plane,  both  are  satisfied  for  all  values  of  t;  this  shows  the  line  lies  on  both 
                                      the  cone  and  tangent plane (this  can  also be  seen geometrically). 
                                      2B-3  Letting  x;y;z  be  respectively  the  lengths  of  the  two  legs  and  the  hypotenuse,  we 
                                                     �  2         2
                                      have  z  =         x + y ;  thus  the  calculation  of  partial  derivatives  is  the  same  as  in  2B-2,  and 
                                      we get  Δz  ≈  3Δx  +  4 Δy.                  Taking  Δx  = Δy  =  :01,  we get  Δz  ≈  7 (:01)  =  :014: 
                                                            5           5                                                                         5
                                      2B-4  From  the  formula,  we  get  R  =                     R1R2 .  From  this  we  calculate 
                                                                                                 R1 +  R2 
                                                                       �               �                                                �                �
                                                             ∂R               R2          2                                   ∂R                R1         2
                                                            ∂R =  R + R                     ,  and  by  symmetry,  ∂R =                    R + R             . 
                                                                 1           1       2                                            2           1        2 
                                      Substituting  R = 1; R = 2 the  approximation formula then gives ΔR  =  4ΔR +  1 ΔR : 
                                                             1             2                                                                              9      1     9       2
                                      By  hypothesis,  |ΔR | ≤ :1;  for  i  = 1;2, so that  |ΔR| ≤ 4(:1) +  1(:1)  = 5 (:1)  ≈ :06;  thus 
                                                                     i                                                     9            9           9
                                                                                              R  =  2  =  :67  ± :06. 
                                                                                                     3 
                                                                                                  2 
                                      2B-5  a)  We have  f(x;y) = (x+y+2) ;                              fx  = 2(x+y+2);               fy  = 2(x+y+2).  Therefore 
                                                   at (0;0),  fx(0;0)  =  fy(0;0)  = 4; f(0;0)  = 4;                       linearization is  4 + 4x  + 4y; 
                                                   at (1;2),  fx(1;2)  =  fy(1;2)  = 10; f(1;2)  = 25; 
                                               linearization  is  10(x  − 1) + 10(y − 2) + 25,  or  10x  + 10y − 5. 
                                                  b)   f  =  ex  cosy;        fx  =  ex  cosy;        fy  =  −ex  siny  . 
                                                  linearization  at (0;0):           1+x;          linearization  at (0;π=2):  −(y − π=2) 
                                      2B-6  We have  V  =  πr2h,  ∂V  = 2πrh;                             ∂V  =  πr2; ΔV  ≈  � ∂V  �  Δr  +  � ∂V  �  Δh. 
                                                                                   ∂r                     ∂h                               ∂r     0             ∂h      0 
                                      Evaluating  the  partials  at  r  = 2; h  =  3,  we  get 
                                                                                           ΔV  ≈ 12πΔr  +4πΔh: 
                                           Assuming  the  same  accuracy  |Δr| ≤ ǫ;  |Δh| ≤ ǫ  for  both  measurements,  we  get 
                                                       |ΔV| ≤ 12πǫ+4πǫ  =  16πǫ;                         which is        <:1  if  ǫ <          1     <:002  : 
                                                                                                                                            160π
                                                                       �  2         2                 −1 y            ∂r          x        ∂r          y
                                      2B-7  We have  r  =                 x + y ;         θ  = tan         x ;        ∂x  =  r;            ∂y    =  r : 
                                      Therefore  at (3;4); r  = 5,  and  Δr  ≈ 3Δx  +  4Δy:  If  |Δx| and  |Δy| are both  ≤ :01, then 
                                                                                                  5           5 
                                                                                   3            4               7 
                                                                     |Δr| ≤          |Δx|+  |Δy|  =               (:01)  =  :014 (or  .02). 
                                                                                   5            5               5 
                                           Similarly,  ∂θ  =            −y      ;    ∂θ  =         x      ,   so at the point (3;4), 
                                                           ∂x       x2 +  y2         ∂y        x2 +  y2 
                                                                     2                                                                           S.  18.02 SOLUTIONS TO EXERCISES 
                                                                                                                   |Δθ| ≤ |−4Δx|+ | 3 Δy| ≤  7 (:01)  =  :0028 (or  .003). 
                                                                                                                                              25                          25                           25 
                                                                            Since at (3;4)  we  have  |r | >  |r |,  r  is  more  sensitive  there  to  changes  in  y; by  analogous 
                                                                                                                                               y                 x
                                                                     reasoning,  θ  is  more  sensitive  there  to  x. 
                                                                     2B-9  a)  w  =  x2(y +1);  w = 2x(y +1)  = 2  at (1;0),  and  w =  x2 = 1  at (1;0);  therefore 
                                                                                                                                                 x                                                                                           y 
                                                                     w  is  more  sensitive  to  changes  in  x  around this point. 
                                                                                         b)         To  first  order  approximation,  Δw  ≈ 2Δx  + Δy,  using  the  above  values  of  the 
                                                                     partial derivatives. 
                                                                            If  we  want Δw  = 0,  then  by  the  above,  2Δx  + Δy  = 0,  or Δy=Δx  =  −2 . 
                                                                                                                                       2C.  Differentials; Approximations 
                                                                     2C-1  a)  dw  =  dx  +  dy  +  dz                                                              b)        dw  = 3x2y2zdx +2x3yzdy + x3y2dz 
                                                                                                                  x               y               z 
                                                                                                                 2ydx−2xdy                                                                      tdu  − udt 
                                                                                        c)       dz  =                  (x  +  y)2                                   d)        dw  =  t√t2 −u2 
                                                                     2C-2  The  volume  is  V  =  xyz;  so  dV  =  yz dx+xzdy  +xydz.  For  x  = 5; y  = 10; z  = 20; 
                                                                                                                                               ΔV  ≈ dV  = 200dx+100dy  +50dz; 
                                                                     from  which  we  see  that  |ΔV | ≤ 350(:1);  therefore  V  = 1000 ± 35. 
                                                                     2C-3  a)  A  =  1absinθ.  Therefore,  dA  =  1(bsinθda +  asinθdb +  abcosθdθ). 
                                                                                                               2                                                                              2 √                                                                   √
                                                                                        b)        dA  =  1(2 ·  1 da + 1  · 1 db + 1  · 2 ·  1                                                         3dθ) =  1(da+ 1 db+                                               3dθ); 
                                                                                                                   2             2                          2                                 2                              2                    2 
                                                                     therefore  most  sensitive  to  θ,  least  senstitive  to  b,  since  dθ  and  db  have  respectively  the 
                                                                     largest  and  smallest  coefficients. 
                                                                                                                  1                                                                      1
                                                                                        c)       dA  =  2(:02 + :01 + 1:73(:02)  ≈ 2(:065)  ≈ :03 
                                                                     2C-4  a)  P  =  kT  ;  therefore  dP  =  k dT  −  kT  dV 
                                                                                                                 V                                                          V                      V  2 
                                                                                        b)        V dP  +  P dV  =  kdT;  therefore  dP  =  kdT  − P dV  . 
                                                                                                                                                                                                                             V 
                                                                                        c)       Substituting  P  =  kT=V  into (b)  turns it into (a). 
                                                                                                       dw                     dt             du              dv                                                                            � dt                du              dv � 
                                                                     2C-5  a)  −                                  =  −               −                − ;                           therefore                      dw  =  w2                            +               +                  . 
                                                                                                       w2                     t2             u2              v2                                                                                 t2             u2              v2 
                                                                                        b)        2udu +4vdv +6wdw  =  0;                                                                  therefore                     dw  = − udu  +2vdv .
                                                                                                                                                                                                                                                            3w 
                                                                                                                                2D.  Gradient;  Directional  Derivative 
                                                                                                                                                                                                                                 �                                                                               √
                                                                                                                          2                    2                                                                          df  �                                                 i    − j                      3 2 
                                                                     2D-1  a)  ∇f  = 3x i  +6y j;                                                              (∇f)P  = 3i  +6j;                                                 �      =(3i  +6j)· √                                             =− 
                                                                                                                                                                                                                          ds � u                                                        2                         2 
                                                                                                                                                                                                                                    � 
                                                                                                y             x              xy                                                                                             dw �                                         i   +2j  −2k                                     1 
                                                                     b)  ∇w  =                       i +            j−               k;            (∇w)P  =  −i+2j+2k;                                                              �       =(∇w)P·                                                           =  −
                                                                                                z             z              z2                                                                                             ds  � u                                                     3                                 3 
                                                                     c)       ∇z  = (siny −ysinx)i  +(xcosy +cosx)j;                                                                                        (∇z)P  =  i  +  j; 
                                                                                                                                                             � 
                                                                                                                                                      dz �                                           −3i  +4j                             1 
                                                                                                                                                             �      =(i  +  j) ·                                                   =
                                                                                                                                                      ds � u                                                     5                        5 
                                                                                                                                                      2.       PARTIAL DIFFERENTIATION                                                                                                                                      3 
                                                                                                                                                                                                                   � 
                                                                                                  2i  + 3j                                                                                                dw �                                                   4i −3j                             1 
                                                                     d)        ∇w  =                                     ;              (∇w)P  = 2i  +3j;                                                          �      =(2i  +3j)·                                                   =−
                                                                                                   2t  + 3u                                                                                                ds  � u                                                        5                         5 
                                                                     e)       ∇f  = 2(u  + 2v  + 3w)(i  + 2j  + 3k);                                                                             (∇f)P  = 4(i  +2j  +3k) 
                                                                                                                                        � 
                                                                                                                                 df  �                                                                 −2i  +2j  − k                                           4 
                                                                                                                                        �      =4(i  +2j  +3k)·                                                                                    =  −
                                                                                                                                 ds � u                                                                                   3                                    3 
                                                                     2D-2  a)  ∇w  = 4i  −3j ;                                                             (∇w)P  = 4i  −3j 
                                                                                      �                               4x  − 3y 
                                                                             dw �                                                                                                                                                                 4i  − 3j 
                                                                                      �      =(4i  −3j)· u  has  maximum  5,  in  the  direction  u  =                                                                                                                    ,
                                                                              ds  � u                                                                                                                                                                       5 
                                                                     and  minimum  −5  in  the  opposite  direction. 
                                                                                      � 
                                                                             dw �                                                                            3i  + 4j 
                                                                                      �      =0inthe directions  ±                                                                  . 
                                                                              ds  � u                                                                                  5 
                                                                     b)        ∇w  =  �y +  z;x  +  z;x  +  y�;                                                       (∇w)P  =  �1;3;0�; 
                                                                                            �             √                                                                                                 �                  √
                                                                                   dw �                                                              i    +3j                                       dw �                                                                        i   +3j 
                                                                     max                    �      =           10, direction                            √               ;             min                   �       =  − 10, direction  −  √                                                      ;
                                                                                    ds  � u                                                                  10                                      ds  � u                                                                            10 
                                                                                             � 
                                                                                    dw �                                                                                         −3i  +  j  +  ck 
                                                                                             �      =0inthe directions  u  =  ±                                                          √                                  (for  all c)
                                                                                     ds  � u                                                                                                  10+c2 
                                                                     c)       ∇z  =  2sin(t  − u)cos(t  − u)(i  − j) = sin2(t  − u)(i  − j);                                                                                                             (∇z)P  =  i  − j; 
                                                                                          �             √                                                                                          �                  √
                                                                                   dz �                                                          i   − j                                    dz  �                                                                 −i  +  j 
                                                                     max                  �       =           2, direction                         √ ;                         min                 �       =  − 2, direction  −                                         √ ;
                                                                                   ds � u                                                                2                                  ds � u                                                                            2 
                                                                                            � 
                                                                                    dz �                                                                            i    +  j 
                                                                                            �      =0inthe directions  ± √
                                                                                     ds � u                              2 3                      3              2 2 2
                                                                     2D-3  a)  ∇f  =  �y z ;2xyz ;3xy z �;                                                                                  (∇f)P  =  �4;12;36�;                                           normal  at  P:  �1;3;9�; 
                                                                                    tangent  plane  at  P:  x  + 3y + 9z  = 18 
                                                                     b)        ∇f  =  �2x;8y;18z�;                                       normal  at  P:  �1;4;9�,                                           tangent  plane:  x  + 4y + 9z  = 14. 
                                                                     c)       (∇w)P  =  �2x0;2y0;−2z0�;                                                       tangent  plane:  x0(x  − x0) + y0(y − y0) − z0(z  − z0) = 0; 
                                                                     or       x x  +  y y − z z  = 0;  since  x2 +  y2 − z2 = 0. 
                                                                                  0                0                0                                           0             0             0 
                                                                     2D-4  a)  ∇T  =  2xi  +2yj  ;                                                                (∇T) = 2i  +4j  ;
                                                                                                                         x2 +  y2                                                P                      5 
                                                                                                                                                                                                                                                                       i   +2j
                                                                     T  is  increasing  at  P  most  rapidly  in the direction  of (∇T)P,  which  is                                                                                                                       √ : 
                                                                                                                                                                                                                                                                                5 
                                                                                                        2                                                                                             i    +2j
                                                                     b)        |∇T| =  √ =  rate  of  increase  in  direction                                                                              √ :  Call  the distance to go Δs, then 
                                                                                                          5                                                                                                     5 
                                                                                                                                                                                                                   √                 √
                                                                                                                                      2                                                                       :2        5                 5 
                                                                                                                                   √5Δs = :20                                 ⇒              Δs  =                 2          = 10  ≈ :22. 
                                                                                       � 
                                                                               dT  �                                                      2i  + 4j                     i    +  j                    6 
                                                                     c)                �       =(∇T)P  · u  =                                                     ·       √ = √ ; 
                                                                                ds  � u                                                            5                           2                5 2
                                                                                                                                                                                                 √                                                  √
                                                                                                                    6                                                                         5 2
                                                                                                                   √ Δs = :12                                 ⇒              Δs  =                6        (:12)  ≈  (:10)(                              2)        ≈  :14 
                                                                                                                5 2 
                                                                                                                                                                                                                 2i  − j 
                                                                     d)        In  the  directions  orthogonal  to  the  gradient:  ±                                                                                 √5 
The words contained in this file might help you see if this file matches what you are looking for:

...Partial dierentiation a functions and derivatives in the pictures below not all of level curves are labeled c d picture is same but labelings dierent more detail b origin curve other two unlabeled on left ones right crude sketches graph rst octant at e x fx y fy xy zx zy cos xyex xex ln f xz z fz yz both sides mnxm yn fxy fyx xsin xcos sin g ax therefore by inspection one sees that if function with given wx aeax sinay wxx wy eaxacosay wyy eaxa...

no reviews yet
Please Login to review.