137x Filetype PDF File size 0.15 MB Source: cdn.dal.ca
Dalhousie University Department of Mathematics and Statistics MATH1010 Differential and Integral Calculus II Fall 2017 INSTRUCTOR: Andrea Fraser, Assoc.Professor Chase Building, Room 206 (by the central stairwell) 494-3062 afraser@mathstat.dal.ca LECTURES: MWF11:35am-12:25pm HENRYHICKSACADEMIC212 OFFICE HOURS: MWF12:35pm-1:25pm TUTORIALS: One hour each week. (Students must enrol in one of the tutorial sections, offered Monday, Wednesday, or Friday 1:35 pm -2:25 pm.) COURSE DESCRIPTION: Acontinuation of the study of calculus with topics including: Riemann sums, techniques of integration, elemen- tary differential equations and applications, parametric equations and polar coordinates, sequences and series, Taylor series. PREREQUISITES: MATH 1000.03, or MATH 1215.03 with a grade of B or better COURSE OBJECTIVES: Understanding and mastery of the basic concepts and methods of calculus. TEXT: Single Variable Calculus: Early Transcendentals 8th ed, James Stewart (Brooks/Cole) BRIGHTSPACE: Material for this course will be offered on Brightspace. (You can access Brightspace via the Quick Link in myDal, or directly at http://www.dal.ca/brightspace.) ASSIGNMENTS: There are eleven online assignments, two of which (Assignments 4 and 5) also have written components. Each assignment will become available on Brightspace at least a week before it is due. In the MATH 1010 course space on Brightspace, navigate to Content, and under Assignments in the Table of Contents, you will find links to the online assignments and handouts for the written parts of Assignments 4 and 5. IMPORTANT DATES: EXAM:as scheduled by the registrar. MIDTERM: in class on Wednesday October 11 (or in the event of university closure, on the next class day the university is open). ONLINE ASSIGNMENTS: must be completed by 9am each Friday* (except Sep 8 and the week of the midterm). * includes the last day of class, Dec 5. WRITTEN PARTS OF ASSIGNMENTS 4 and 5: due in class at the start of lecture on Oct 6 and Oct 20 respectively (or in the event of university closure, on the next class day the university is open). COURSE ASSESSMENT: Exam: 50% Midterm: 30% Assignments: 20% CONVERSION OF GRADES: Follows the Dalhousie Common Grade Scale. 90 – 100 A+ 77 – 79.9 B+ 65 – 69.9 C+ 50 – 54.9 D 85 – 89.9 A 73 – 76.9 B 60 – 64.9 C 0 – 49.9 F 80 – 84.9 A- 70 – 72.9 B- 55 – 59.9 C- COURSE POLICIES: Students are responsible for all announcements (made in class, by email, or on Brightspace), and for learning all material that is covered in lectures, as well as the material in the sections of the text listed in the attached course outline. If you do not attend lectures, you should make contact with a fellow student who does; if you do not use your official Dalhousie email address, you should set a forward on it to an address you do use. Online assignments must be completed by their due dates in order to count towards the final grade. After the due dates, online assignments can still be attempted for practice, but no scores will be recorded. The written parts of Assignments 4 and 5 must be completed on the question sheets and submitted in class at the start of lecture on the days they are due. If you cannot attend lecture on the appropriate day, you may submit your written assignment electronically (scanned and emailed to your professor at the above address), but it must be received by 11:35 am. Because full solutions to these written parts will be posted on Brightspace on the due dates, no late papers will be accepted. Students are required to be present in class for the midterm and at the scheduled exam location for the exam. Absence for the midterm or exam will result in a score of 0. No exceptions will be made to these policies unless there are extreme medical or compassionate reasons. In such cases, clear documentation must be provided that explicitly justifies either the absence for an exam, or the inability to do the work during the available time for an assignment. If you miss the midterm or exam for a valid reason, you must contact your professor by email within 24 hours, attaching documentation justifying your absence, as well as your official Dalhousie class schedule. Failure to do so may result in a score of 0 regardless of your situation. If the reasons for your absence are deemed acceptable, you may be permitted to write a make-up paper, which will then be scheduled for you at the earliest possible date based solely on the constraints of your official Dalhousie class schedule. UNIVERSITY POLICIES AND STUDENT RESOURCES: Information on Dalhousie policies and student resources can be found under Syllabus in the Table of Contents of the MATH 1010 course space on Brightspace. COURSE OUTLINE AND SUGGESTED PROBLEMS FROM THE TEXT: This timeline is approximate only. It can also be found (with possible updates) in the Table of Contents in the MATH 1010 course space on Brightspace. Week1: 5.2, 5.3, 5.4, 5.5 (review) Riemann integral, fundamental theorem of calculus, substitution 7.1 Integration by parts Week2: 7.1 Integration by parts, cont’d: 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 22, 35, 37, 41, 51 7.2 Using trigonometric identities: 1, 3, 7, 11, 21, 23, 25, 27, 29, 31, 35, 39, 47, 49 7.3 Inverse trigonometric substitution: 1, 3, 5, 7, 9, 11, 13, 17, 21, 23, 27 Week3: 7.4 Integ. of rational functions by partial fractions: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 29, 33, 41, 47, 51 7.5 Integration review: 1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 27, 29, 31, 37, 39, 41, 43, 47, 49, 51, 55, 63, 65, 71, 81 7.8 Improper integrals: 5, 11, 21, 39, 49, 50, 51, 52, 53, 54, 58, 59 Week4: 7.8 Improper integrals, cont’d. Please note: Techniques will be taught in class that are not covered in the text. Further problems will be given. 6.1 Areas between curves: 1, 2, 3, 4, 5, 11, 19, 24, 27, 28 6.5 Average value of a function: 3, 5, 7 6.2 Volumes, slice method: 3, 5, 9, 11, 13, 15, 49, 52 6.3 Solids of revolution, shell method: 3, 5, 7, 11, 13, 15, 19 Week5: 6.3 Slice and shell methods for volumes of solids of revolution, cont’d. Pleasenote: Further problems will be given. 8.1 Arc length: 9, 11, 13, 15 8.2 Surface area: 7, 13, 15, 17 10.1 Parametric curves: 5, 7, 9, 15 10.2 Calculus with parametric curves: 1, 3, 7, 11, 13, 41, 43 Week6: MIDTERM in class Wednesday October 11, 2017 10.3 Polar coordinates: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 Week7: 10.3 Curves in polar coordinates: 29, 31, 33, 35, 37, 39 10.4 Arc length in polar coordinates: 45, 47 11.1 Sequences and limits: 3, 5, 7, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 41, 42, 43, 45, 47, 49, 51 11.2 Series, geometric series: 17, 19, 21, 23, 25 Week8: 11.2 Manipulating series, n-th term test for divergence: 27, 29, 31, 33, 37, 39 11.3 The integral test, p-series: 3, 4, 9, 11, 21, 29, 30 11.4 Comparison and limit-comparison tests for series: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 38 11.5 Alternating series: 5, 7, 9, 11, 13, 15, 17, 19 11.6 Absolute convergence, ratio and root tests: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 11.7 Strategy for testing series: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 37 Week9: 11.8 Power series, radius and interval of convergence: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 11.9 Functions given by power series, differentiation and integration: 3, 5, 7, 9, 15, 25 Week10: 11.9 Finding power series by manipulation: 11, 13, 17, 19 11.10 Binomial series: 31, 33, 41, 51, 53 11.10 Taylor and Maclaurin series: 7, 9, 13, 15, 19, 21, 23, 25, 35, 37, 39, 43 Week11: 11.10 Taylor and Maclaurin cont’d, integrals and limits using Taylor series: 55, 61, 63, 65, 67, 69, 71 9.1 Introduction to differential equations: 1, 2, 9, 11 Week12: 9.3 Separable equations: 1, 3, 5, 7, 9, 11, 13, 15, 17 9.4 Exponential growth and decay: 5 7 9.5 Linear equations: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 Week13: REVIEW
no reviews yet
Please Login to review.