jagomart
digital resources
picture1_Calculus Pdf 169054 | Lambdanotes


 176x       Filetype PDF       File size 0.66 MB       Source: www.mscs.dal.ca


File: Calculus Pdf 169054 | Lambdanotes
lecture notes on the lambda calculus peter selinger department of mathematics and statistics dalhousie university halifax canada abstract this is a set of lecture notes that developed out of courses ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                     Lecture Notes on the Lambda Calculus
                                                                                                              Peter Selinger
                                                                                   Department of Mathematics and Statistics
                                                                                      Dalhousie University, Halifax, Canada
                                                                                                                     Abstract
                                                                          This is a set of lecture notes that developed out of courses on the lambda
                                                                    calculus that I taught at the University of Ottawa in 2001 and at Dalhousie
                                                                    University in 2007 and 2013. Topics covered in these notes include the un-
                                                                    typed lambda calculus, the Church-Rosser theorem, combinatory algebras,
                                                                    the simply-typed lambda calculus, the Curry-Howard isomorphism, weak
                                                                    and strong normalization, polymorphism, type inference, denotational se-
                                                                    mantics, complete partial orders, and the language PCF.
                                                          Contents
                                                          1     Introduction                                                                                                               1
                                                                1.1       Extensional vs. intensional view of functions                               . . . . . . . . . . .                1
                                                                1.2       Thelambdacalculus . . . . . . . . . . . . . . . . . . . . . . . .                                                2
                                                                1.3       Untypedvs. typed lambda-calculi                          . . . . . . . . . . . . . . . . .                       3
                                                                1.4       Lambdacalculusandcomputability . . . . . . . . . . . . . . . .                                                   4
                                                                1.5       Connectionsto computerscience . . . . . . . . . . . . . . . . . .                                                5
                                                                1.6       Connectionsto logic                 .  . . . . . . . . . . . . . . . . . . . . . . .                             5
                                                                1.7       Connectionsto mathematics . . . . . . . . . . . . . . . . . . . .                                                6
                                                          2     Theuntypedlambdacalculus                                                                                                   6
                                                                2.1       Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           6
                                                                                                                           i
                                            2.2   Free and bound variables, α-equivalence . . . . . . . . . . . . . .           8
                                            2.3   Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      10
                                            2.4   Introduction to β-reduction . . . . . . . . . . . . . . . . . . . . .       12
                                            2.5   Formaldefinitionsof β-reductionand β-equivalence . . . . . . .               13
                                        3   Programmingintheuntypedlambdacalculus                                             14
                                            3.1   Booleans     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    14
                                            3.2   Natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . .       15
                                            3.3   Fixed points and recursive functions . . . . . . . . . . . . . . . .        17
                                            3.4   Other data types: pairs, tuples, lists, trees, etc. . . . . . . . . . . .   20
                                        4   TheChurch-RosserTheorem                                                           22
                                            4.1   Extensionality, η-equivalence, and η-reduction . . . . . . . . . . .        22
                                            4.2   Statement of the Church-Rosser Theorem, and some consequences               23
                                            4.3   Preliminary remarks on the proof of the Church-Rosser Theorem .             25
                                            4.4   Proof of the Church-Rosser Theorem . . . . . . . . . . . . . . . .          27
                                            4.5   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    32
                                        5   Combinatoryalgebras                                                               34
                                            5.1   Applicative structures . . . . . . . . . . . . . . . . . . . . . . . .      34
                                            5.2   Combinatorycompleteness . . . . . . . . . . . . . . . . . . . . .           35
                                            5.3   Combinatoryalgebras . . . . . . . . . . . . . . . . . . . . . . . .         37
                                            5.4   Thefailure of soundness for combinatory algebras . . . . . . . . .          38
                                            5.5   Lambdaalgebras . . . . . . . . . . . . . . . . . . . . . . . . . .          40
                                            5.6   Extensional combinatory algebras . . . . . . . . . . . . . . . . .          44
                                        6   Simply-typed lambda calculus, propositional logic, and the Curry-
                                            Howardisomorphism                                                                 46
                                            6.1   Simple types and simply-typed terms . . . . . . . . . . . . . . . .         46
                                            6.2   Connectionsto propositional logic . . . . . . . . . . . . . . . . .         49
                                            6.3   Propositional intuitionistic logic    . . . . . . . . . . . . . . . . . .   51
                                                                                    ii
                                           6.4   Analternative presentation of natural deduction . . . . . . . . . .       53
                                           6.5   TheCurry-HowardIsomorphism . . . . . . . . . . . . . . . . . .            55
                                           6.6   Reductions in the simply-typed lambda calculus . . . . . . . . . .        57
                                           6.7   AwordonChurch-Rosser . . . . . . . . . . . . . . . . . . . . .            58
                                           6.8   Reduction as proof simplification . . . . . . . . . . . . . . . . . .      59
                                           6.9   Getting mileage out of the Curry-Howardisomorphism . . . . . .            60
                                           6.10 Disjunction and sum types . . . . . . . . . . . . . . . . . . . . .        61
                                           6.11 Classical logic vs. intuitionistic logic . . . . . . . . . . . . . . . .   63
                                           6.12 Classical logic and the Curry-Howardisomorphism . . . . . . . .            65
                                       7   Weakandstrongnormalization                                                      66
                                           7.1   Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    66
                                           7.2   Weakandstrongnormalizationin typed lambdacalculus . . . . .               67
                                       8   Polymorphism                                                                    68
                                           8.1   Syntax of System F . . . . . . . . . . . . . . . . . . . . . . . . .      68
                                           8.2   Reduction rules . . . . . . . . . . . . . . . . . . . . . . . . . . .     69
                                           8.3   Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      70
                                                 8.3.1    Booleans . . . . . . . . . . . . . . . . . . . . . . . . . .     70
                                                 8.3.2    Natural numbers . . . . . . . . . . . . . . . . . . . . . .      71
                                                 8.3.3    Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
                                           8.4   Church-Rosser property and strong normalization . . . . . . . . .         72
                                           8.5   TheCurry-Howardisomorphism . . . . . . . . . . . . . . . . . .            73
                                           8.6   Supplying the missing logical connectives . . . . . . . . . . . . .       74
                                           8.7   Normalformsandlongnormalforms . . . . . . . . . . . . . . .               75
                                           8.8   Thestructure of closed normal forms . . . . . . . . . . . . . . . .       77
                                           8.9   Application: representation of arbitrary data in System F . . . . .       79
                                       9   Typeinference                                                                   81
                                           9.1   Principal types    . . . . . . . . . . . . . . . . . . . . . . . . . . .  82
                                                                                 iii
                                            9.2   Typetemplates and type substitutions       . . . . . . . . . . . . . . .   82
                                            9.3   Unifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      84
                                            9.4   Theunification algorithm . . . . . . . . . . . . . . . . . . . . . .        85
                                            9.5   Thetypeinferencealgorithm . . . . . . . . . . . . . . . . . . . .          87
                                        10 Denotationalsemantics                                                             88
                                            10.1 Set-theoretic interpretation . . . . . . . . . . . . . . . . . . . . .      89
                                            10.2 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       91
                                            10.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . .        93
                                        11 ThelanguagePCF                                                                    93
                                            11.1 Syntax and typing rules . . . . . . . . . . . . . . . . . . . . . . .       94
                                            11.2 Axiomatic equivalence . . . . . . . . . . . . . . . . . . . . . . .         95
                                            11.3 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . .       96
                                            11.4 Big-step semantics . . . . . . . . . . . . . . . . . . . . . . . . .        98
                                            11.5 Operational equivalence . . . . . . . . . . . . . . . . . . . . . . . 100
                                            11.6 Operational approximation . . . . . . . . . . . . . . . . . . . . . 101
                                            11.7 Discussion of operational equivalence . . . . . . . . . . . . . . . 101
                                            11.8 Operational equivalence and parallel or       . . . . . . . . . . . . . . 102
                                        12 Completepartialorders                                                           104
                                            12.1 Whyaresets notenough,in general? . . . . . . . . . . . . . . . . 104
                                            12.2 Complete partial orders . . . . . . . . . . . . . . . . . . . . . . . 104
                                            12.3 Properties of limits . . . . . . . . . . . . . . . . . . . . . . . . . 106
                                            12.4 Continuousfunctions . . . . . . . . . . . . . . . . . . . . . . . . 106
                                            12.5 Pointed cpo’s and strict functions . . . . . . . . . . . . . . . . . . 107
                                            12.6 Products and function spaces . . . . . . . . . . . . . . . . . . . . 107
                                            12.7 The interpretation of the simply-typed lambda calculus in com-
                                                  plete partial orders   . . . . . . . . . . . . . . . . . . . . . . . . . 109
                                            12.8 Cpo’s and fixed points       . . . . . . . . . . . . . . . . . . . . . . . 109
                                                                                  iv
The words contained in this file might help you see if this file matches what you are looking for:

...Lecture notes on the lambda calculus peter selinger department of mathematics and statistics dalhousie university halifax canada abstract this is a set that developed out courses i taught at ottawa in topics covered these include un typed church rosser theorem combinatory algebras simply curry howard isomorphism weak strong normalization polymorphism type inference denotational se mantics complete partial orders language pcf contents introduction extensional vs intensional view functions thelambdacalculus untypedvs calculi lambdacalculusandcomputability connectionsto computerscience logic theuntypedlambdacalculus syntax free bound variables equivalence substitution to reduction formaldenitionsof reductionand programmingintheuntypedlambdacalculus booleans natural numbers fixed points recursive other data types pairs tuples lists trees etc thechurch rossertheorem extensionality statement some consequences preliminary remarks proof exercises combinatoryalgebras applicative structures comb...

no reviews yet
Please Login to review.