146x Filetype PDF File size 0.04 MB Source: www.leeward.hawaii.edu
Calculus Formulas d n n−1 n xn+1 Product Rule: d []() () () () () () Power Rules: x =nx and ∫x dx = +c dx f x ⋅ g x = f x ⋅ g' x + f ' x ⋅ g x dx n+1 ⎡ ⎤ ⎡ ⎤ () () () () ( ) () Quotient Rule: d ⎢ f x ⎥ = g x ⋅ f ' x − f x ⋅ g' x Reciprocal Rule: d ⎢ 1 ⎥ = − g' x dx g()x 2 dx g()x 2 []() []() ⎣ ⎦ g x ⎣ ⎦ g x Chain Rule: d ( )() []() () Integration-by-Parts: u dv =uv − v du dx f o g x = f ' g x ⋅ g' x ∫∫ Trigonometric Functions Inverse Trigonometric Functions Derivative Integral Derivative Integral d sinx = cosx ∫sinx dx = −cosx+c d sin−1 x = 1 dx dx 1−x2 ∫ 1 dx =sin−1 u + c d d cos−1 x = −1 a2 −u2 a dxcosx=−sinx ∫cosx dx =sinx+c dx 1−x2 d ∫tanx dx = lnsecx +c d 1 − tan x = sec2 x tan 1 x = dx ∫sec2 x dx = tan x + c dx 1+x2 1 dx = 1 tan−1 u + c cot x dx = lnsin x + c ∫ a2 +u2 a a d ∫ d − −1 cot x = −csc2 x cot 1 x = dx ∫csc2 x dx = −cot x + c dx 1+x2 d ∫secx dx =lnsecx + tan x + c d sec−1 x = 1 dx secx =secx⋅tan x secx⋅tanx dx =secx+c dx x x2 −1 ∫ ∫ 1 dx = 1 sec−1 u + c cscx dx = lncscx−cotx +c d −1 u u2 −a2 a a − d cscx = −cscx⋅cotx ∫ csc 1 x = dx ∫cscx⋅cotx dx=−cscx+c dx x x2 −1 ⎧ 2 2 2 1+cos2x sin x + cos x =1 sin 2x = 2sin xcos x cos x = ⎪ 2 ⎪ 1−cos2x ⎪ 2 2 2 2 2 Identities: 1+ cot x = csc x cos2x = cos x −sin x sin x = ⎨ 2 ⎪ ⎪tan2 x +1=sec2 x cos()x + y = cos xcos y − sin xsin y sin()x + y = sin xcos y + cos xsin y ⎪ ⎩ Exponential Functions Logarithmic Functions Derivative Integral Derivative Integral d x x ex dx = ex + c d ( ) 1 1 () dx e =e ∫ dx ln x = x ∫ x dx = ln x + c d x x x bx d ( ) 1 () log x = b =()lnb b ∫b dx= +c b () dx lnb dx lnb x Definition of Log base b: log N = x ⇔bx = N Change of Base Formula: log x = lnx = logx b b lnb logb ⎧ x ln x () ln e =x e =x ln e = log10 = log b=1 Identities: ⎪ b ⎨ x log x ⎪ () b logb b =x b =x ln1= log1= logb 1= 0 ⎩ Infinite Series: Definitions & Tests ⎧ ∞ () ⎪ an =a +a +a +... Infinite Series ∑ 1 2 3 ⎪n= ⎪ 1 ⎪ n () 1. Series: ⎨s = a =a +a +...+a nth Partial Sum ⎪ n ∑ i 1 2 n ⎪ i=1 ⎪ ∞ () if lim sn = s where s∈ℜ then an = s Infinite Sum ⎪ n→∞ ∑ ⎩ n=1 ∞ ⎧ a , if r <1 n 2 3 ⎪ 2. Geometric Series: ar =a+ar+ar +ar +... = 1−r ∑ ⎨ n=0 ⎪diverges, if r ≥1 ⎩ ∞ converges, if p >1 3. P-Series: 1 ⎧ ⇒ ∑np ⎨diverges, if p≤1 if p =1, the series is called the harmonic series. n=1 ⎩ ⎧ ∞ ∞ if lim a ≠0, then a diverges ⎪ n ∑ n 4. Quick Divergence Test: Given ⎪ n→∞ a ⇒ ∑ n ⎨ n=1 n=1 ⎪ if lim an = 0, then No Conclusion! Do another test! ⎪ n→∞ ⎩ ⎧ ∞ ∞ ⎪if an dn converges then an converges ∞ ⎪ ∫ ∑ 5. Integral Test: Given a , a >0, a decreasing ⇒ ⎪ c n=c ∑ n n n ⎨ ∞ ∞ n=c ⎪if a dn diverges then a diverges ⎪ ∫ n ∑ n ⎪ c n=c ⎩ ⎧ ∞ ⎪ an converges, when p <1, ∑ ⎪n=c ∞ a ⎪ ∞ n+1 ⎪ 6. Ratio Test: Given a , a >0 ⇒ if lim = p then a diverges, when p >1, n n ⎨ n ∑ n→∞ a ∑ n=c n ⎪n=c ⎪No Conclusion, when p =1 ⎪ ⎪ ⎩ ⎧ ∞ ⎪ an converges, when p <1, ∑ ⎪n=c ∞ 1 ⎪ ∞ n () ⎪ 7. Root Test: Given a , a >0 ⇒ if lim a = lim a n = p then a diverges, when p >1, n n n n ⎨ n ∑ n→∞ n→∞ ∑ n=c ⎪n=c ⎪No Conclusion, when p =1 ⎪ ⎪ ⎩ ∞ ∞ ⎧ if lim an = p, p > 0, p finite ⎪ n→∞ b 8. Limit Comparison Test: a and b , a >0, b >0 ⇒ ∑ n ∑n n n ⎨ n n=c n=c ⎪then both series converge or both diverge ⎩ ∞ ∞ ⎧ if b converges then a converges, 9. Comparison Test: a and b , a ≥0, b ≥0, a ≤b ⇒ n n ∑ n ∑n n n n n ⎨ if an diverges then bn diverges n=c n=c ⎩ ∞ ∞ n n 10. Alternating Series Test: Given () () −1 an , if an >0, an+1 < an, lim an = 0, then −1 an converges ∑ n→∞ ∑ n=c n=c
no reviews yet
Please Login to review.