184x Filetype PDF File size 2.87 MB Source: notendur.hi.is
CALCULUS I Paul Dawkins Calculus I Table of Contents Preface ........................................................................................................................................... iii Outline ........................................................................................................................................... iv Review............................................................................................................................................. 2 Introduction .............................................................................................................................................. 2 Review : Functions ................................................................................................................................... 4 Review : Inverse Functions .................................................................................................................... 10 Review : Trig Functions ......................................................................................................................... 17 Review : Solving Trig Equations ............................................................................................................ 24 Review : Solving Trig Equations with Calculators, Part I .................................................................... 33 Review : Solving Trig Equations with Calculators, Part II ................................................................... 44 Review : Exponential Functions ............................................................................................................ 49 Review : Logarithm Functions ............................................................................................................... 52 Review : Exponential and Logarithm Equations .................................................................................. 58 Review : Common Graphs ...................................................................................................................... 64 Limits ............................................................................................................................................ 76 Introduction ............................................................................................................................................ 76 Rates of Change and Tangent Lines ...................................................................................................... 78 The Limit ................................................................................................................................................. 87 One‐Sided Limits .................................................................................................................................... 97 Limit Properties .....................................................................................................................................103 Computing Limits ..................................................................................................................................109 Infinite Limits ........................................................................................................................................117 Limits At Infinity, Part I .........................................................................................................................126 Limits At Infinity, Part II .......................................................................................................................135 Continuity ...............................................................................................................................................144 The Definition of the Limit ....................................................................................................................151 Derivatives .................................................................................................................................. 166 Introduction ...........................................................................................................................................166 The Definition of the Derivative ...........................................................................................................168 Interpretations of the Derivative .........................................................................................................174 Differentiation Formulas ......................................................................................................................179 Product and Quotient Rule ...................................................................................................................187 Derivatives of Trig Functions ...............................................................................................................193 Derivatives of Exponential and Logarithm Functions ........................................................................204 Derivatives of Inverse Trig Functions ..................................................................................................209 Derivatives of Hyperbolic Functions ....................................................................................................215 Chain Rule ..............................................................................................................................................217 Implicit Differentiation .........................................................................................................................227 Related Rates .........................................................................................................................................236 Higher Order Derivatives ......................................................................................................................250 Logarithmic Differentiation ..................................................................................................................255 Applications of Derivatives ....................................................................................................... 258 Introduction ...........................................................................................................................................258 Rates of Change......................................................................................................................................260 Critical Points .........................................................................................................................................263 Minimum and Maximum Values ...........................................................................................................269 Finding Absolute Extrema ....................................................................................................................277 The Shape of a Graph, Part I ..................................................................................................................283 The Shape of a Graph, Part II ................................................................................................................292 The Mean Value Theorem .....................................................................................................................301 Optimization ..........................................................................................................................................308 More Optimization Problems ...............................................................................................................322 © 2007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx Calculus I Indeterminate Forms and L’Hospital’s Rule ........................................................................................336 Linear Approximations .........................................................................................................................342 Differentials ...........................................................................................................................................345 Newton’s Method ...................................................................................................................................348 Business Applications ...........................................................................................................................353 Integrals ...................................................................................................................................... 359 Introduction ...........................................................................................................................................359 Indefinite Integrals ................................................................................................................................360 Computing Indefinite Integrals ............................................................................................................366 Substitution Rule for Indefinite Integrals ............................................................................................376 More Substitution Rule .........................................................................................................................389 Area Problem .........................................................................................................................................402 The Definition of the Definite Integral .................................................................................................412 Computing Definite Integrals ...............................................................................................................422 Substitution Rule for Definite Integrals ...............................................................................................434 Applications of Integrals ........................................................................................................... 445 Introduction ...........................................................................................................................................445 Average Function Value ........................................................................................................................446 Area Between Curves ............................................................................................................................449 Volumes of Solids of Revolution / Method of Rings ............................................................................460 Volumes of Solids of Revolution / Method of Cylinders .....................................................................470 Work .......................................................................................................................................................478 Extras .......................................................................................................................................... 482 Introduction ...........................................................................................................................................482 Proof of Various Limit Properties ........................................................................................................483 Proof of Various Derivative Facts/Formulas/Properties ...................................................................494 Proof of Trig Limits ...............................................................................................................................507 Proofs of Derivative Applications Facts/Formulas .............................................................................512 Proof of Various Integral Facts/Formulas/Properties .......................................................................523 Area and Volume Formulas ..................................................................................................................535 Types of Infinity .....................................................................................................................................539 Summation Notation .............................................................................................................................543 Constants of Integration .......................................................................................................................545 © 2007 Paul Dawkins ii http://tutorial.math.lamar.edu/terms.aspx Calculus I Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my “class notes” they should be accessible to anyone wanting to learn Calculus I or needing a refresher in some of the early topics in calculus. I’ve tried to make these notes as self contained as possible and so all the information needed to read through them is either from an Algebra or Trig class or contained in other sections of the notes. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. 1. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn calculus I have included some material that I do not usually have time to cover in class and because this changes from semester to semester it is not noted here. You will need to find one of your fellow class mates to see if there is something in these notes that wasn’t covered in class. 2. Because I want these notes to provide some more examples for you to read through, I don’t always work the same problems in class as those given in the notes. Likewise, even if I do work some of the problems in here I may work fewer problems in class than are presented here. 3. Sometimes questions in class will lead down paths that are not covered here. I try to anticipate as many of the questions as possible when writing these up, but the reality is that I can’t anticipate all the questions. Sometimes a very good question gets asked in class that leads to insights that I’ve not included here. You should always talk to someone who was in class on the day you missed and compare these notes to their notes and see what the differences are. 4. This is somewhat related to the previous three items, but is important enough to merit its own item. THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!! Using these notes as a substitute for class is liable to get you in trouble. As already noted not everything in these notes is covered in class and often material or insights not in these notes is covered in class. © 2007 Paul Dawkins iii http://tutorial.math.lamar.edu/terms.aspx
no reviews yet
Please Login to review.