167x Filetype PDF File size 3.31 MB Source: www3.math.tu-berlin.de
Projective Geometry Alexander I. Bobenko Draft from April 21, 2020 Preliminary version. Partially extended and partially incomplete. Based on the lecture Geometry I (Winter Semester 2016 TU Berlin). Written by Thilo Rörig based on the Geometry I course and the Lecture Notes of Boris Springborn from WS 2007/08. Acknoledgements: We thank Alina Hinzmann and Jan Techter for the help with preparation of these notes. Contents 1 Introduction 1 2 Projective geometry 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Projective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Projective subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Homogeneousandaffinecoordinates . . . . . . . . . . . . . . . . 7 2.2.3 Models of real projective spaces . . . . . . . . . . . . . . . . . . . 8 2.2.4 Projection of two planes onto each other . . . . . . . . . . . . . . . 10 2.2.5 Points in general position . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Desargues’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Projective transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 Central projections and Pappus’ Theorem . . . . . . . . . . . . . . 19 2.5 Thecross-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.1 Projective involutions of the real projective line . . . . . . . . . . . 25 2.6 Complete quadrilateral and quadrangle . . . . . . . . . . . . . . . . . . . . 25 2.6.1 Möbiustetrahedra and Koenigs cubes . . . . . . . . . . . . . . . . 29 2.6.2 Projective involutions of the real projective plane . . . . . . . . . . 31 2.7 Thefundamental theorem of real projective geometry . . . . . . . . . . . . 32 2.8 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9 Conic sections – The Euclidean point of view . . . . . . . . . . . . . . . . 38 2.9.1 Optical properties of the conic sections . . . . . . . . . . . . . . . 41 2.10 Conics – The projective point of view . . . . . . . . . . . . . . . . . . . . 43 2.11 Pencils of conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.12 Rational parametrizations of conics . . . . . . . . . . . . . . . . . . . . . 50 2.13 The pole-polar relationship, the dual conic and Brianchon’s theorem . . . . 52 2.14 Confocal conics and elliptic billiard . . . . . . . . . . . . . . . . . . . . . 56 2.14.1 Circumscribable complete quadrilateral . . . . . . . . . . . . . . . 58 2.15 Quadrics. The Euclidean point of view. . . . . . . . . . . . . . . . . . . . 62 2.16 Quadrics. The projective point of view . . . . . . . . . . . . . . . . . . . . 64 2.16.1 Orthogonal Transformations . . . . . . . . . . . . . . . . . . . . . 65 2.16.2 Lines in a quadric . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 i ii Contents 2.16.3 Brianchon hexagon . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.17 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.18 The synthetic approach to projective geometry . . . . . . . . . . . . . . . . 70 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
no reviews yet
Please Login to review.