jagomart
digital resources
picture1_Geometry Pdf 168633 | Geometry1 Projective


 167x       Filetype PDF       File size 3.31 MB       Source: www3.math.tu-berlin.de


File: Geometry Pdf 168633 | Geometry1 Projective
projective geometry alexander i bobenko draft from april 21 2020 preliminary version partially extended and partially incomplete based on the lecture geometry i winter semester 2016 tu berlin written by ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                   Projective Geometry
                        Alexander I. Bobenko
                       Draft from April 21, 2020
            Preliminary version. Partially extended and partially incomplete. Based
            on the lecture Geometry I (Winter Semester 2016 TU Berlin).
            Written by Thilo Rörig based on the Geometry I course and the Lecture
            Notes of Boris Springborn from WS 2007/08.
            Acknoledgements: We thank Alina Hinzmann and Jan Techter for the
            help with preparation of these notes.
                   Contents
                   1   Introduction                                                                                1
                   2   Projective geometry                                                                         3
                       2.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      3
                       2.2   Projective spaces    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
                             2.2.1    Projective subspaces . . . . . . . . . . . . . . . . . . . . . . . . .       6
                             2.2.2    Homogeneousandaffinecoordinates . . . . . . . . . . . . . . . .                7
                             2.2.3    Models of real projective spaces . . . . . . . . . . . . . . . . . . .       8
                             2.2.4    Projection of two planes onto each other . . . . . . . . . . . . . . .     10
                             2.2.5    Points in general position . . . . . . . . . . . . . . . . . . . . . . .   12
                       2.3   Desargues’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        13
                       2.4   Projective transformations     . . . . . . . . . . . . . . . . . . . . . . . . . .  15
                             2.4.1    Central projections and Pappus’ Theorem . . . . . . . . . . . . . .        19
                       2.5   Thecross-ratio     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
                             2.5.1    Projective involutions of the real projective line . . . . . . . . . . .   25
                       2.6   Complete quadrilateral and quadrangle . . . . . . . . . . . . . . . . . . . .       25
                             2.6.1    Möbiustetrahedra and Koenigs cubes . . . . . . . . . . . . . . . .         29
                             2.6.2    Projective involutions of the real projective plane . . . . . . . . . .    31
                       2.7   Thefundamental theorem of real projective geometry . . . . . . . . . . . .          32
                       2.8   Duality    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
                       2.9   Conic sections – The Euclidean point of view . . . . . . . . . . . . . . . .        38
                             2.9.1    Optical properties of the conic sections    . . . . . . . . . . . . . . .  41
                       2.10 Conics – The projective point of view       . . . . . . . . . . . . . . . . . . . .  43
                       2.11 Pencils of conics     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
                       2.12 Rational parametrizations of conics       . . . . . . . . . . . . . . . . . . . . .  50
                       2.13 The pole-polar relationship, the dual conic and Brianchon’s theorem . . . .          52
                       2.14 Confocal conics and elliptic billiard     . . . . . . . . . . . . . . . . . . . . .  56
                             2.14.1 Circumscribable complete quadrilateral . . . . . . . . . . . . . . .         58
                       2.15 Quadrics. The Euclidean point of view.        . . . . . . . . . . . . . . . . . . .  62
                       2.16 Quadrics. The projective point of view . . . . . . . . . . . . . . . . . . . .       64
                             2.16.1 Orthogonal Transformations . . . . . . . . . . . . . . . . . . . . .         65
                             2.16.2 Lines in a quadric . . . . . . . . . . . . . . . . . . . . . . . . . . .     67
                                                                   i
                   ii                                                                                      Contents
                             2.16.3 Brianchon hexagon . . . . . . . . . . . . . . . . . . . . . . . . . .        68
                       2.17 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     69
                       2.18 The synthetic approach to projective geometry . . . . . . . . . . . . . . . .        70
                       Problems     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
The words contained in this file might help you see if this file matches what you are looking for:

...Projective geometry alexander i bobenko draft from april preliminary version partially extended and incomplete based on the lecture winter semester tu berlin written by thilo rorig course notes of boris springborn ws acknoledgements we thank alina hinzmann jan techter for help with preparation these contents introduction spaces subspaces homogeneousandanecoordinates models real projection two planes onto each other points in general position desargues theorem transformations central projections pappus thecross ratio involutions line complete quadrilateral quadrangle mobiustetrahedra koenigs cubes plane thefundamental duality conic sections euclidean point view optical properties conics pencils rational parametrizations pole polar relationship dual brianchon s confocal elliptic billiard circumscribable quadrics orthogonal lines a quadric ii hexagon polarity synthetic approach to problems...

no reviews yet
Please Login to review.