160x Filetype PDF File size 0.04 MB Source: www3.leeward.hawaii.edu
Algebra Formulas Geometry Quadratic Equation 2 2 2 2 ()() Equation of a circle: x − h + y−k =r , ax +bx+c=0 () Center = h,k , Radius = r Quadratic Function: y = ax2 +bx+c, Quadratic Formula ⎛ b b2 ⎞ −b± b2 −4ac ⎜ ⎟ Vertex = x= ⎜− 2a, c− 4a⎟ 2a ⎝ ⎠ 2 2 ()() Distance Formula: d = x −x + y −y 2 1 2 1 y −y 1 Slope: m = 2 1 , Parallel lines: m = m , Perpendicular lines: m = − x −x 1 2 1 m 2 1 () 2 Point-Slope Formula: y − y = m x− x 1 1 Slope-Intercept Form: y = mx+b, Horizontal Line: y = b, Vertical Line: x = a (m = 0) (m undefined) Standard Form: Ax+By=C ⎛ x + x y + y ⎞ Midpoint Formula: ⎜ 1 2 , 1 2 ⎟ ⎝ 2 2 ⎠ Factoring Difference of Squares: Perfect Square Binomials: 2 2 2 2 2 ()() ( ) a −b = a−b a+b (1) a +b =a +2ab+b 2 2 2 ( ) (2) a−b =a −2ab+b Difference of Cubes 3 3 2 2 ()( ) a −b = a−b a +ab+b Perfect Cube Binomials 3 3 2 2 3 ( ) Sum of Cubes (1) a+b =a +3a b+3ab +b 3 3 2 2 3 3 2 2 3 ()( ) ( ) a +b = a+b a −ab+b (2) a −b =a −3a b+3ab −b Exponents/Radicals Imaginary Number Absolute Value m n m+n 0 () b ⋅b =b b =1, b ≠ 0 i = −1 x if x ≥ x ⎧ , 0 2 = ⎨ x if x i =−1 ⎩− , <0 m n mn n n n 2 () () b =b ab =a b 3 a a i =−i = bm ⎛a⎞n an =bm−n ⎜ ⎟ = i4=1 n n For a > b ⎝ b ⎠ b 0, −n 1 x =a⇔x=−aorx=a b = bn ⎛ a ⎞−n ⎛ b ⎞n () x −a x < a ⎜ ⎟ =⎜ ⎟ and 1 ⎝ b ⎠ ⎝ a ⎠ n () ⇔ −aa⇔x<−a x > a n ab = n an b or 1 n b =bn a n a nm mn n () b = b b = n b , b ≠ 0 Area & Perimeter Formulas Area (A) is the amount of square units of space an object occupies. Perimeter (P) is the distance around a figure. 1. Square: A quadrilateral (4-sided figure) 2. Triangle: A 3-sided figure o with four 90 (right) angles and four equal sides. s 1 A = s2 A= B⋅h s s 1 2 2 s s h P = 4s P = B + s + s (height) 1 2 s B 3. Rectangle: A quadrilateral with four 90o (right) angles. 4. Right Triangle: triangle with a 90o (right) angle C (Hypotenuse) 1 A = L x W A A= A⋅B W 2 (Leg) (width) P = 2L + 2W P = A +B +C L (length) B (Leg) Pythagorean Theorem 2 2 2 5. Parallelogram: A quadrilateral with equal opposite sides. A + B = C A = B x h s h (height) P = 2B + 2s B (base) 6. Trapezoid: A quadrilateral with exactly one pair of parallel sides. B (base) 1 1 () A=hB+B and s h s 1 2 1 2 2 (height) P = B + B + s + s 1 2 1 2 B (base) 2 7. Circle: A set of points a constant distance (radius) from a given point (center). Radius (r) A=πr2 Diameter (d) (distance from (distance across the center to circle) C=2πr circle) Circumference d (C) d = 2r or r = 2 (distance around center the circle)
no reviews yet
Please Login to review.