jagomart
digital resources
picture1_Simple Equations Problems Pdf 168212 | Pdebook


 124x       Filetype PDF       File size 1.45 MB       Source: www.math.uni-leipzig.de


File: Simple Equations Problems Pdf 168212 | Pdebook
partial dierential equations lecture notes erich miersemann department of mathematics leipzig university version october 2012 2 contents 1 introduction 9 1 1 examples 11 1 2 equations from variational problems ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
                Partial Differential Equations
                    Lecture Notes
                    Erich Miersemann
                  Department of Mathematics
                    Leipzig University
                   Version October, 2012
               2
                         Contents
                         1 Introduction                                                                      9
                            1.1   Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        11
                            1.2   Equations from variational problems . . . . . . . . . . . . . .           15
                                  1.2.1    Ordinary differential equations . . . . . . . . . . . . .         15
                                  1.2.2    Partial differential equations      . . . . . . . . . . . . . .   16
                            1.3   Exercises     . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   22
                         2 Equations of first order                                                         25
                            2.1   Linear equations . . . . . . . . . . . . . . . . . . . . . . . . .        25
                            2.2   Quasilinear equations       . . . . . . . . . . . . . . . . . . . . . .   31
                                  2.2.1    Alinearization method        . . . . . . . . . . . . . . . . .   32
                                  2.2.2    Initial value problem of Cauchy . . . . . . . . . . . . .        33
                            2.3   Nonlinear equations in two variables . . . . . . . . . . . . . .          40
                                  2.3.1    Initial value problem of Cauchy . . . . . . . . . . . . .        48
                                                               n
                            2.4   Nonlinear equations in R        . . . . . . . . . . . . . . . . . . . .   51
                            2.5   Hamilton-Jacobi theory . . . . . . . . . . . . . . . . . . . . .          53
                            2.6   Exercises     . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   59
                         3 Classification                                                                   63
                            3.1   Linear equations of second order . . . . . . . . . . . . . . . .          63
                                  3.1.1    Normal form in two variables . . . . . . . . . . . . . .         69
                            3.2   Quasilinear equations of second order . . . . . . . . . . . . . .         73
                                  3.2.1    Quasilinear elliptic equations . . . . . . . . . . . . . .       73
                            3.3   Systems of first order . . . . . . . . . . . . . . . . . . . . . . .       74
                                  3.3.1    Examples . . . . . . . . . . . . . . . . . . . . . . . . .       76
                            3.4   Systems of second order . . . . . . . . . . . . . . . . . . . . .         82
                                  3.4.1    Examples . . . . . . . . . . . . . . . . . . . . . . . . .       83
                            3.5   Theorem of Cauchy-Kovalevskaya . . . . . . . . . . . . . . . .            84
                                  3.5.1    Appendix: Real analytic functions . . . . . . . . . . .          90
                                                                   3
                                 4                                                                CONTENTS
                                     3.6  Exercises   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
                                 4 Hyperbolic equations                                                    107
                                     4.1  One-dimensional wave equation . . . . . . . . . . . . . . . . . 107
                                     4.2  Higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . 109
                                          4.2.1   Case n=3 . . . . . . . . . . . . . . . . . . . . . . . . . 112
                                          4.2.2   Case n = 2 . . . . . . . . . . . . . . . . . . . . . . . . 115
                                     4.3  Inhomogeneous equation . . . . . . . . . . . . . . . . . . . . . 117
                                     4.4  Amethod of Riemann . . . . . . . . . . . . . . . . . . . . . . 120
                                     4.5  Initial-boundary value problems . . . . . . . . . . . . . . . . . 125
                                          4.5.1   Oscillation of a string . . . . . . . . . . . . . . . . . . 125
                                          4.5.2   Oscillation of a membrane . . . . . . . . . . . . . . . . 128
                                          4.5.3    Inhomogeneous wave equations . . . . . . . . . . . . . 131
                                     4.6  Exercises   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
                                 5 Fourier transform                                                       141
                                     5.1  Definition, properties . . . . . . . . . . . . . . . . . . . . . . . 141
                                          5.1.1   Pseudodifferential operators . . . . . . . . . . . . . . . 146
                                     5.2  Exercises   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
                                 6 Parabolic equations                                                     151
                                     6.1  Poisson’s formula . . . . . . . . . . . . . . . . . . . . . . . . . 152
                                     6.2  Inhomogeneous heat equation . . . . . . . . . . . . . . . . . . 155
                                     6.3  Maximum principle . . . . . . . . . . . . . . . . . . . . . . . . 156
                                     6.4  Initial-boundary value problem . . . . . . . . . . . . . . . . . 162
                                          6.4.1   Fourier’s method . . . . . . . . . . . . . . . . . . . . . 162
                                          6.4.2   Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 164
                                     6.5  Black-Scholes equation . . . . . . . . . . . . . . . . . . . . . . 164
                                     6.6  Exercises   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
                                 7 Elliptic equations of second order                                      175
                                     7.1  Fundamental solution     . . . . . . . . . . . . . . . . . . . . . . 175
                                     7.2  Representation formula     . . . . . . . . . . . . . . . . . . . . . 177
                                          7.2.1   Conclusions from the representation formula     . . . . . 179
                                     7.3  Boundary value problems . . . . . . . . . . . . . . . . . . . . 181
                                          7.3.1   Dirichlet problem . . . . . . . . . . . . . . . . . . . . . 181
                                          7.3.2   Neumann problem . . . . . . . . . . . . . . . . . . . . 182
                                          7.3.3   Mixed boundary value problem . . . . . . . . . . . . . 183
                                     7.4  Green’s function for △ . . . . . . . . . . . . . . . . . . . . . . 183
                                          7.4.1   Green’s function for a ball . . . . . . . . . . . . . . . . 186
The words contained in this file might help you see if this file matches what you are looking for:

...Partial dierential equations lecture notes erich miersemann department of mathematics leipzig university version october contents introduction examples from variational problems ordinary exercises rst order linear quasilinear alinearization method initial value problem cauchy nonlinear in two variables n r hamilton jacobi theory classication second normal form elliptic systems theorem kovalevskaya appendix real analytic functions hyperbolic one dimensional wave equation higher dimensions case inhomogeneous amethod riemann boundary oscillation a string membrane fourier transform denition properties pseudodierential operators parabolic poisson s formula heat maximum principle uniqueness black scholes fundamental solution representation conclusions the dirichlet neumann mixed green function for ball...

no reviews yet
Please Login to review.