170x Filetype PDF File size 0.79 MB Source: www.math.uni-bonn.de
Lectures on Analytic Geometry Peter Scholze (all results joint with Dustin Clausen) Contents Analytic Geometry 5 Preface 5 1. Lecture I: Introduction 6 2. Lecture II: Solid modules 11 3. Lecture III: Condensed R-vector spaces 16 4. Lecture IV: M-complete condensed R-vector spaces 20 Appendix to Lecture IV: Quasiseparated condensed sets 26 5. Lecture V: Entropy and a real B+ 28 dR 6. Lecture VI: Statement of main result 33 Appendix to Lecture VI: Recollections on analytic rings 39 7. Lecture VII: Z((T)) is a principal ideal domain 42 >r 8. Lecture VIII: Reduction to “Banach spaces” 47 Appendix to Lecture VIII: Completions of normed abelian groups 54 Appendix to Lecture VIII: Derived inverse limits 56 9. Lecture IX: End of proof 57 Appendix to Lecture IX: Some normed homological algebra 65 10. Lecture X: Some computations with liquid modules 69 11. Lecture XI: Towards localization 73 12. Lecture XII: Localizations 79 Appendix to Lecture XII: Topological invariance of analytic ring structures 86 Appendix to Lecture XII: Frobenius 89 Appendix to Lecture XII: Normalizations of analytic animated rings 93 13. Lecture XIII: Analytic spaces 95 14. Lecture XIV: Varia 103 Bibliography 109 3
no reviews yet
Please Login to review.