152x Filetype PDF File size 1.28 MB Source: college.cengage.com
332522CB_1100_AN.qxd 4/4/06 5:30 PM Page 1 Precalculus with Limits, Answers to Section 11.1 1 3 7 1 Chapter 11 32. 2, 2, 2 33. 0, 1, 7 34. 1, 6, 2 Section 11.1 (page 817) 9 9 13 35. 1, 0, 5.5 36. 2, 2, 2 37. 2.5, 2, 6 7 3 2 2 2 Vocabulary Check (page 817) 38. 9, 2, 2 39. x 3 y 2 z 4 16 2 2 2 1. three-dimensional 40. x 3 y 4 z 3 4 2. xy-plane, -plane, xz yz-plane 3. octants 2 2 2 41. x y 4 z 3 9 x x y y z z 4. Distance formula 5. 1 2, 1 2, 1 2 2 2 2 2 2 2 42. x 2 y 1 z 8 36 6. sphere 7. surface, space 8. trace 2 2 2 43. x 3 y 7 z 5 25 2 2 2 1. A: 1, 4, 4, B: 1, 3, 2, C: 3, 0, 2 44. x y 5 z 9 16 2. A: 6, 2, 3; B: 2, 1, 2; C: 2, 3, 0 3 2 2 2 45 z 45. x 2 y z 3 4 3. z 4. 1 2 2 2 61 5 3 4 46. x 2 y 1 z 4 4 4 (3, 2, 1) 47. Center: 5, 0, 0 ; radius: 5 3 (2, 1, 3) 2 2 2 (1, 2, 1) 5 4 3 2 1 2 3 y 21 48. Center: 0, 4, 0; radius: 4 1 y (3, 0, 0) 2 1 2 3 4 5 4 2 49. Center: 2, 1, 3; radius: 2 32 x 3 4 2 4 5 3 5 50. Center: 3, 2, 0; radius: 2 x 5. z (4, 2, 2) 6. z 51. Center: 2, 0, 4; radius: 1 3 4 5 52. Center: 0, 4, 3; radius: 2 3 2 3 4 1 (4, 0, 4) 3 4 53. Center: 1, , 4 ; radius: 3 1 2 3 y 1 5 4 3 2 21 123 y 1 3 54. Center: , , 1 ; radius: 1 (3, 1, 0) 43 1 2 3 56 2 2 4 2 1 x 3 55. Center: , 1, 0 ; radius: 1 65 3 3 4 4 (0, 4, 3) 5 x 56. Center: 1, 4, 1 ; radius: 3 5 2 7. 3, 3, 4 8. 6, 1, 1 9. 10, 0, 0 57. 58. z z 10. 0, 2, 8 11. Octant IV 12. Octant VI (x 1)2 + z2 = 36 (0, 3, 0) 6 13. Octants I, II, III, and IV 4 10 4 86 6 8 2 4 2 14. Octants III, IV, VII, and VIII 2 2 2 4 2 2 15. Octants II, IV, VI, and VIII (1, 0, 0) 6 6 y All rights reserved. 10 8 y x 8 . 16. Octants I, II, VII, and VIII x 6 2 2 (y + 3) + z = 25 17. 65 units 18. 2 13 units 19. 29 units 59. 60. z flin Company20. 13 units 21. 114 units 22. 5 units z (y 3)2 + z2 = 5 23. 110 units 24. 113 units 4 2 2 2 2 4 2 4 25. 2 5 3 29 Houghton Mif (2, 3, 0) 2 (0, 1, 1) 2 2 2 2 2 2 26. 2 14 6 62 27. 3 6 3 5 2 x 2 2 4 2 2 2 x 6 28. 3 2 13 29. 6, 6, 2 10; isosceles triangle 4 y 3 y 2 2 x + (y 1) = 3 Copyright ©30. 3, 3, 4 2; isosceles triangle 31. 2, 1, 2 6 332522CB_1100_AN.qxd 4/4/06 5:30 PM Page 2 Precalculus with Limits, Answers to Section 11.1 2 (Continued) 82. 83. 5, 116.57 41, 51.34 84. 85. 86. 2 61. z 62. z 149, 325.01 7 6 87. 1, 2, 6, 15, 31 5 First differences: 1, 4, 9, 16 Second differences: 3, 5, 7 6 Neither 4 2 4 88. 0, 1, 2, 3, 4 2 2 First differences: 1, 1, 1, 1 3 2 2 3 5 4 4 2 y Second differences: 0, 0, 0 x 5 y 4 x Linear 2 63. 3, 3, 3 64. 4, 4, 8 65. x2 y2 z2 165 89. 2, 5, 8, 11 4 1, 66. (a) 2 2 2 2 First differences: 3, 3, 3, 3 x y z 3963 (b) trace: 2 2 2 Second differences: 0, 0, 0 xz- x z 3963 ; trace: 2 2 2 yz- y z 3963 Linear These traces would form circles. 90. 4, 0, 6, 14, 24 (c) trace: 2 2 2 xy- x y 3963 First differences: 4, 6, 8, 10 This trace would form a circle. (d) yz-trace (e) xy-trace Second differences: 2, 2, 2 67. False. is the directed distance from the plane to Quadratic z xy- P. 68. False. The xy-trace could also be a point or may not exist. 91. 2 2 x 5 y 1 49 69. 0; 0; 0 92. 2 2 70. No, the graph of the equation is a x 3 y 6 81 axbycz0 plane. 93. 2 y 1 12x 4 71. Apoint or a circle (where the sphere and the yz-plane meet) 94. 2 72. Astraight line in the xy-plane x 2 20y 5 73. x , y , z 2x x, 2y y , 2z z 2 2 2 2 2 m 1 m 1 m 1 95. x 3 y 3 1 74. 75. 3 ± 17 9 4 7, 16, 12 v 2 2 2 96. x y3 1 76. z 7 ± 5 5 77. x 5 ± 5 454 814 2 2 2 2 x 6 y 78. 3 ± 13 79. 1 ± 10 97. 1 x 2 y 2 4 32 2 2 80. 5 ± 89 81. 7 y 5 x 3 x 4 3 2, 4 98. 16 9 1 All rights reserved. . flin Company Houghton Mif Copyright © 332522CB_1100_AN.qxd 4/4/06 5:30 PM Page 3 Precalculus with Limits, Answers to Section 11.2 3 Section 11.2 (page 825) (c) (d) z z 5 , 5, 5 Vocabulary Check (page 825) 6 2 2 1 , 1, 1 5 2 2 1. zero 2. v v i v j v k 1 4 1 2 3 3 3. component form 4. orthogonal 5. parallel y 2 4 2 1 1 2 3 1 1 1. (a) 2, 3, 1 2. (a) 0, 0, 4 2 1 3 2 y 21 142 3 5 (b) (b) x 3 2 4 2 z z x 3 3 7. z 3, 7, 6 8. z 7, 19, 13 2 2 4 4 1 3 1 3 2 3(2, 3, 1) 3 9. z 2, 6, 2 10. z 0, 1, 0 11. 9 2 1 2 1 32 2 1 1 2 2 3 12. 29 13. 74 14. 41 15. 34 16. 14 1 1 4 3 2 4 y 2 2 3 x 17. (a) 748i 3j k (b) 748i 3j k 3 y 3 74 74 x 4 (0, 0, 4) 18. (a) 1343i 5j 10k 3. (a) (b) (c) 11 134 7, 5, 5 3 11 33 7, 5, 5 (b) 1343i 5j 10k 134 4. (a) (b) (c) 67 7, 3, 3 67 67 7, 3, 3 19. 4 20. 28 21. 0 22. 0 23. 124.45 5. (a) (b) 24. 49.80 25. 109.92 26. 65.47 z z 27. Parallel 28. Neither 29. Orthogonal 6 〈2, 2, 6〉 4 30. Parallel 31. Not collinear 32. Collinear 5 3 4 4 2 3 33. Collinear 34. Not collinear 35. 3, 1, 7 3 5 7 11 3 7 2 4 3 2 y 36. 10, 5, 2 37. 6, 2, 4 38. 2, 2, 2 21 142 3 1 3 〈1, 1, 3〉 y 4 3 2 1 143 4 39. 3 14 40. 2 x 3 ± 14 ± 6 4 3 2 4 41. or x 0, 2 2, 2 2 0, 2 2, 2 2 (c) (d) 42. or 5 3, 0, 5 5 3, 0, 5 z z 43. 226.52 newtons, 202.92 newtons, 157.91 newtons 5 3, 3, 9 4 4 2 2 2 3 44. (a) T 8L , L > 18 3 2 4 2 2 3 L 18 2 〈0, 0, 0〉 (b) 1 4 3 2 y y 21 142 3 L 20 25 30 35 40 45 50 4 3 2 21 243 3 All rights reserved.3 4 2 T 18.4 11.5 10 9.3 9.0 8.7 8.6 . x 4 2 3 x 3 4 (c) 30 L = 18 6. (a) (b) flin Company z z 〈2, 4, 4〉 4 4 T = 8 3 4 3 4 0100 2 3 2 3 0 Houghton Mif 1 1 Horizontal asymptote: T 8 6 5 4 3 1 2 y 4 3 2 y Vertical asymptote: L 18 21 142 3 2 4 3 The minimum tension in each cable is 8; the minimum 〈1, 2, 2〉 2 cable length is 18. x 3 x 3 Copyright © 4 4 (d) 30 inches 332522CB_1100_AN.qxd 4/4/06 5:30 PM Page 4 Precalculus with Limits, Answers to Section 11.2 4 (Continued) 50. (a) x t (b) x t 1 45. True 46. True y 2 y 2 47. The angle between u and v is an obtuse angle. t t 1 48. Aline 51. (a) x t (b) x t 1 y t2 8 y t2 2t 7 49. (a) x t (b) x t 1 52. (a) x t (b) x t 1 y 3t 2 y 3t 1 3 3 y 4t y 4t 1 All rights reserved. . flin Company Houghton Mif Copyright ©
no reviews yet
Please Login to review.