jagomart
digital resources
picture1_Geometry Pdf 167669 | Pearson 3


 145x       Filetype PDF       File size 0.89 MB       Source: www.hanover.k12.in.us


File: Geometry Pdf 167669 | Pearson 3
pearson geometry 7 3 notebook march 16 2017 proving triangles similar just as when we were proving triangles were congruent using sss sas asa or aas we have similar ways ...

icon picture PDF Filetype PDF | Posted on 25 Jan 2023 | 2 years ago
Partial capture of text on file.
   Pearson Geometry 7.3.notebook                March 16, 2017
                     Proving Triangles Similar
            Just as when we were proving triangles were congruent (using SSS, SAS, 
            ASA, or AAS), we have similar ways to show triangles are similar.
            Angle ­ Angle Similarity (AA~) ­ 
                           If two angles of one triangle are 
            congruent to two angles of another triangle, then the triangles are similar.
            IF....         THEN....
          Are the two triangles similar?  Explain.
          Are the two triangles similar?  Explain.
                                                         1
   Pearson Geometry 7.3.notebook                March 16, 2017
          Side ­ Angle ­ Side ~ Theorem (SAS) ­ 
                            If an angle of one triangle is congruent to the 
          angle of a second triangle and the sides that include the two angles are proportional, 
          then the triangles are similar.
          IF....            THEN....
          Side ­ Side ­ Side ~ Theorem (SSS) ­  If the corresponding sides of two triangles are 
          proportional, then the triangles are similar.
          IF....            THEN....
                                                         2
   Pearson Geometry 7.3.notebook                March 16, 2017
           Are the triangles similar?  If so write a similarity statement for the triangles.
                               Short Sides
                               Longest Sides
                               Remaining Sides
           They all have the same ratios, so the sides are proportional.  That means 
           Are the triangles similar?  If so write a similarity statement for the triangles.
                              Compare the two triangles:  
                                 They both share angle K.  Now compare KL 
                                 and KM.  Then compare KP and KN.
          The sides are proportional and the included angles are congruent.  So, 
                                                         3
   Pearson Geometry 7.3.notebook                March 16, 2017
          TRY:  Are the triangles similar?  If so, write the 
          similarity statement and explain how you know 
          they are similar.
          a.
          b.    
         We have AA, SAS, and SSS for similarity of triangles.  Why do you think we do not use 
         ASA or AAS for triangle similarity?
                                                         4
The words contained in this file might help you see if this file matches what you are looking for:

...Pearson geometry notebook march proving triangles similar just as when we were congruent using sss sas asa or aas have ways to show are angle similarity aa if two angles of one triangle another then the explain side theorem an is a second and sides that include proportional corresponding so write statement for short longest remaining they all same ratios means compare both share k now kl km kp kn included try how you know b why do think not use...

no reviews yet
Please Login to review.