128x Filetype PDF File size 1.14 MB Source: uu.diva-portal.org
U.U.D.M. Project Report 2020:53 Measure theory, fractal geometry and their applications on digital sundials Arvid Törnblom Examensarbete i matematik, 15 hp Handledare: Konstantinos Tsougkas Examinator: Veronica Crispin Quinonez Augusti 2020 Department of Mathematics Uppsala University Abstract Thedigital sundial is a recent invention that displays the time of day in digits on a flat surface by projecting a shadow. It contains no moving or electrical parts and is based on a theorem from fractal geometry. In this thesis we will study this theorem which the sundial is based upon and the necessary measure theoretic background to understand the theorem. 1 Contents 1 Introduction 1 2 Measure Theory 2 2.1 σ - algebras and Measures . . . . . . . . . . . . . . . . . . . . 2 2.2 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Non-measurable sets . . . . . . . . . . . . . . . . . . . . . . . 8 3 Fractal Geometry 11 3.1 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Fractal Projection . . . . . . . . . . . . . . . . . . . . . . . . . 23 2
no reviews yet
Please Login to review.