166x Filetype PDF File size 0.89 MB Source: faculty.math.illinois.edu
An Introduction to Complex Analysis and Geometry John P. D’Angelo Dept. of Mathematics, Univ. of Illinois, 1409 W. Green St., Urbana IL 61801 jpda@math.uiuc.edu 1 2 c 2009 by John P. D’Angelo Contents Chapter 1. From the real numbers to the complex numbers 11 1. Introduction 11 2. Number systems 11 3. Inequalities and ordered fields 16 4. The complex numbers 24 5. Alternative definitions of C 26 6. Aglimpse at metric spaces 30 Chapter 2. Complex numbers 35 1. Complex conjugation 35 2. Existence of square roots 37 3. Limits 39 4. Convergent infinite series 41 5. Uniform convergence and consequences 44 6. The unit circle and trigonometry 50 7. The geometry of addition and multiplication 53 8. Logarithms 54 Chapter 3. Complex numbers and geometry 59 1. Lines, circles, and balls 59 2. Analytic geometry 62 3. Quadratic polynomials 63 4. Linear fractional transformations 69 5. The Riemann sphere 73 Chapter 4. Power series expansions 75 1. Geometric series 75 2. The radius of convergence 78 3. Generating functions 80 4. Fibonacci numbers 82 5. An application of power series 85 6. Rationality 87 Chapter 5. Complex differentiation 91 1. Definitions of complex analytic function 91 2. Complex differentiation 92 3. The Cauchy-Riemann equations 94 4. Orthogonal trajectories and harmonic functions 97 5. Aglimpse at harmonic functions 98 6. What is a differential form? 103 3 4 CONTENTS Chapter 6. Complex integration 107 1. Complex-valued functions 107 2. Line integrals 109 3. Goursat’s proof 116 4. The Cauchy integral formula 119 5. Areturn to the definition of complex analytic function 124 Chapter 7. Applications of complex integration 127 1. Singularities and residues 127 2. Evaluating real integrals using complex variables methods 129 3. Fourier transforms 136 4. The Gamma function 138 Chapter 8. Additional Topics 143 1. The minimum-maximum theorem 143 2. The fundamental theorem of algebra 144 3. Winding numbers, zeroes, and poles 147 4. Pythagorean triples 152 5. Elementary mappings 155 6. Quaternions 158 7. Higher dimensional complex analysis 160 Further reading 163 Bibliography 165 Index 167
no reviews yet
Please Login to review.