122x Filetype PDF File size 2.19 MB Source: images2.wikia.nocookie.net
Victor Andreevich Toponogov with the editorial assistance of Vladimir Y. Rovenski Differential Geometry of Curves and Surfaces AConciseGuide ¨ Birkhauser Boston • Basel • Berlin Victor A. Toponogov (deceased) With the editorial assistance of: Department of Analysis and Geometry Vladimir Y. Rovenski Sobolev Institute of Mathematics Department of Mathematics Siberian Branch of the Russian Academy University of Haifa of Sciences Haifa, Israel Novosibirsk-90, 630090 Russia Cover design by Alex Gerasev. AMSSubjectClassification: 53-01, 53Axx, 53A04, 53A05, 53A55, 53B20, 53B21, 53C20, 53C21 Library of Congress Control Number: 2005048111 ISBN-100-8176-4384-2 eISBN0-8176-4402-4 ISBN-13978-0-8176-4384-3 Printed on acid-free paper. c ¨ 2006 Birkhauser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ¨ ten permission of the publisher (Birkhauser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re- trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TXQ/EB) 987654321 www.birkhauser.com Contents Preface ....................................................... vii AbouttheAuthor .............................................. ix 1 TheoryofCurvesinThree-dimensionalEuclideanSpaceandinthe Plane....................................................... 1 1.1 Preliminaries . . ............................................ 1 1.2 Definition and Methods of Presentation of Curves . .............. 2 1.3 Tangent Line and Osculating Plane . . .......................... 6 1.4 Length of a Curve .......................................... 11 1.5 Problems: Convex Plane Curves .............................. 15 1.6 Curvature of a Curve. . ...................................... 19 1.7 Problems: Curvature of Plane Curves .......................... 24 1.8 Torsion of a Curve.......................................... 45 1.9 TheFrenet Formulas and the Natural Equation of a Curve. ........ 47 1.10 Problems: Space Curves ..................................... 51 1.11 Phase Length of a Curve and the Fenchel–Reshetnyak Inequality. . . 56 1.12 Exercises to Chapter 1 ...................................... 61 2 Extrinsic Geometry of Surfaces in Three-dimensional Euclidean Space ...................................................... 65 2.1 Definition and Methods of Generating Surfaces . . . .............. 65 2.2 TheTangentPlane.......................................... 70 2.3 First Fundamental Form of a Surface .......................... 74 vi Contents 2.4 Second Fundamental Form of a Surface ........................ 79 2.5 TheThirdFundamental Form of a Surface...................... 91 2.6 Classes of Surfaces . . . ...................................... 95 2.7 SomeClassesofCurvesonaSurface ..........................114 2.8 TheMainEquationsofSurfaceTheory ........................127 2.9 Appendix: Indicatrix of a Surface of Revolution .................139 2.10 Exercises to Chapter 2 ......................................147 3 Intrinsic Geometry of Surfaces .................................151 3.1 Introducing Notation . . ......................................151 3.2 Covariant Derivative of a Vector Field .........................152 3.3 Parallel Translation of a Vector along a Curve on a Surface . . . ......................................153 3.4 Geodesics .................................................156 3.5 Shortest Paths and Geodesics . ................................161 3.6 Special Coordinate Systems . . ................................172 3.7 Gauss–Bonnet Theorem and Comparison Theorem for the Angles of a Triangle . . . ............................................179 3.8 Local Comparison Theorems for Triangles . ....................184 3.9 Aleksandrov Comparison Theorem for the Angles of a Triangle....189 3.10 Problems to Chapter 3. ......................................195 References ..................................................199 Index.......................................................203
no reviews yet
Please Login to review.