jagomart
digital resources
picture1_Geometry Pdf 166586 | Ma3d92016fall


 151x       Filetype PDF       File size 0.54 MB       Source: homepages.warwick.ac.uk


File: Geometry Pdf 166586 | Ma3d92016fall
geometry of curves and surfaces weiyi zhang mathematics institute university of warwick september 18 2016 2 contents 1 curves 5 1 1 course description 5 1 1 1 abit preparation ...

icon picture PDF Filetype PDF | Posted on 24 Jan 2023 | 2 years ago
Partial capture of text on file.
              Geometry of Curves and Surfaces
                     Weiyi Zhang
              Mathematics Institute, University of Warwick
                   September 18, 2016
              2
                       Contents
                       1 Curves                                                                           5
                           1.1   Course description . . . . . . . . . . . . . . . . . . . . . . . .       5
                                 1.1.1   Abit preparation: Differentiation . . . . . . . . . . . .         6
                           1.2   Methods of describing a curve . . . . . . . . . . . . . . . . . .        8
                                 1.2.1   Fixed coordinates . . . . . . . . . . . . . . . . . . . . .      8
                                 1.2.2   Moving frames: parametrized curves . . . . . . . . . .           8
                                 1.2.3   Intrinsic way(coordinate free) . . . . . . . . . . . . . .       9
                           1.3   Curves in Rn: Arclength Parametrization . . . . . . . . . . .           10
                           1.4   Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     12
                           1.5   Orthonormal frame: Frenet-Serret equations . . . . . . . . . .          15
                           1.6   Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . .    17
                           1.7   More results for space curves . . . . . . . . . . . . . . . . . .       20
                                 1.7.1   Taylor expansion of a curve . . . . . . . . . . . . . . .       20
                                 1.7.2   Fundamental Theorem of the local theory of curves . .           21
                           1.8   Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . .      21
                           1.9   The Four Vertex Theorem . . . . . . . . . . . . . . . . . . . .         24
                       2 Surfaces in R3                                                                  29
                           2.1   Definitions and Examples . . . . . . . . . . . . . . . . . . . .         29
                                 2.1.1   Compact surfaces . . . . . . . . . . . . . . . . . . . . .      32
                                 2.1.2   Level sets . . . . . . . . . . . . . . . . . . . . . . . . .    33
                           2.2   The First Fundamental Form . . . . . . . . . . . . . . . . . .          34
                           2.3   Length, Angle, Area . . . . . . . . . . . . . . . . . . . . . . .       35
                                 2.3.1   Length: Isometry . . . . . . . . . . . . . . . . . . . . .      36
                                 2.3.2   Angle: conformal . . . . . . . . . . . . . . . . . . . . .      37
                                 2.3.3   Area: equiareal . . . . . . . . . . . . . . . . . . . . . .     37
                           2.4   The Second Fundamental Form . . . . . . . . . . . . . . . . .           38
                                 2.4.1   Normals and orientability . . . . . . . . . . . . . . . .       39
                                 2.4.2   Gauss map and second fundamental form . . . . . . .             40
                           2.5   Curvatures     . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
                                 2.5.1   Definitions and first properties . . . . . . . . . . . . .        42
                                 2.5.2   Calculation of Gaussian and mean curvatures . . . . .           45
                                 2.5.3   Principal curvatures . . . . . . . . . . . . . . . . . . .      47
                                                                 3
                                  4                                                                      CONTENTS
                                      2.6   Gauss’s Theorema Egregium           . . . . . . . . . . . . . . . . . .  49
                                            2.6.1    Gaussian curvature for special cases . . . . . . . . . .        52
                                      2.7   Surfaces of constant Gaussian curvature . . . . . . . . . . . .          53
                                      2.8   Parallel transport and covariant derivative . . . . . . . . . . .        56
                                      2.9   Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      58
                                            2.9.1    General facts for geodesics . . . . . . . . . . . . . . . .     58
                                            2.9.2    Geodesics on surfaces of revolution . . . . . . . . . . .       62
                                            2.9.3    Geodesics and shortest paths . . . . . . . . . . . . . .        64
                                            2.9.4    Geodesic coordinates . . . . . . . . . . . . . . . . . . .      65
                                            2.9.5    Half plane model of hyperbolic plane . . . . . . . . . .        67
                                      2.10 Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . . . . .            68
                                            2.10.1 Geodesic polygons . . . . . . . . . . . . . . . . . . . .         70
                                            2.10.2 Global Gauss-Bonnet          . . . . . . . . . . . . . . . . . .  71
                                      2.11 Vector fields and Euler number . . . . . . . . . . . . . . . . .           73
The words contained in this file might help you see if this file matches what you are looking for:

...Geometry of curves and surfaces weiyi zhang mathematics institute university warwick september contents course description abit preparation dierentiation methods describing a curve fixed coordinates moving frames parametrized intrinsic way coordinate free in rn arclength parametrization curvature orthonormal frame frenet serret equations plane more results for space taylor expansion fundamental theorem the local theory isoperimetric inequality four vertex r denitions examples compact level sets first form length angle area isometry conformal equiareal second normals orientability gauss map curvatures rst properties calculation gaussian mean principal s theorema egregium special cases constant parallel transport covariant derivative geodesics general facts on revolution shortest paths geodesic half model hyperbolic bonnet polygons global vector elds euler number...

no reviews yet
Please Login to review.