151x Filetype PDF File size 0.54 MB Source: homepages.warwick.ac.uk
Geometry of Curves and Surfaces Weiyi Zhang Mathematics Institute, University of Warwick September 18, 2016 2 Contents 1 Curves 5 1.1 Course description . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Abit preparation: Differentiation . . . . . . . . . . . . 6 1.2 Methods of describing a curve . . . . . . . . . . . . . . . . . . 8 1.2.1 Fixed coordinates . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 Moving frames: parametrized curves . . . . . . . . . . 8 1.2.3 Intrinsic way(coordinate free) . . . . . . . . . . . . . . 9 1.3 Curves in Rn: Arclength Parametrization . . . . . . . . . . . 10 1.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Orthonormal frame: Frenet-Serret equations . . . . . . . . . . 15 1.6 Plane curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 More results for space curves . . . . . . . . . . . . . . . . . . 20 1.7.1 Taylor expansion of a curve . . . . . . . . . . . . . . . 20 1.7.2 Fundamental Theorem of the local theory of curves . . 21 1.8 Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . . 21 1.9 The Four Vertex Theorem . . . . . . . . . . . . . . . . . . . . 24 2 Surfaces in R3 29 2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Compact surfaces . . . . . . . . . . . . . . . . . . . . . 32 2.1.2 Level sets . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 The First Fundamental Form . . . . . . . . . . . . . . . . . . 34 2.3 Length, Angle, Area . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.1 Length: Isometry . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 Angle: conformal . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Area: equiareal . . . . . . . . . . . . . . . . . . . . . . 37 2.4 The Second Fundamental Form . . . . . . . . . . . . . . . . . 38 2.4.1 Normals and orientability . . . . . . . . . . . . . . . . 39 2.4.2 Gauss map and second fundamental form . . . . . . . 40 2.5 Curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 Definitions and first properties . . . . . . . . . . . . . 42 2.5.2 Calculation of Gaussian and mean curvatures . . . . . 45 2.5.3 Principal curvatures . . . . . . . . . . . . . . . . . . . 47 3 4 CONTENTS 2.6 Gauss’s Theorema Egregium . . . . . . . . . . . . . . . . . . 49 2.6.1 Gaussian curvature for special cases . . . . . . . . . . 52 2.7 Surfaces of constant Gaussian curvature . . . . . . . . . . . . 53 2.8 Parallel transport and covariant derivative . . . . . . . . . . . 56 2.9 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.9.1 General facts for geodesics . . . . . . . . . . . . . . . . 58 2.9.2 Geodesics on surfaces of revolution . . . . . . . . . . . 62 2.9.3 Geodesics and shortest paths . . . . . . . . . . . . . . 64 2.9.4 Geodesic coordinates . . . . . . . . . . . . . . . . . . . 65 2.9.5 Half plane model of hyperbolic plane . . . . . . . . . . 67 2.10 Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . . . . . 68 2.10.1 Geodesic polygons . . . . . . . . . . . . . . . . . . . . 70 2.10.2 Global Gauss-Bonnet . . . . . . . . . . . . . . . . . . 71 2.11 Vector fields and Euler number . . . . . . . . . . . . . . . . . 73
no reviews yet
Please Login to review.