jagomart
digital resources
picture1_Geometry Pdf 166346 | Sub Riem Notes


 158x       Filetype PDF       File size 2.43 MB       Source: cvgmt.sns.it


File: Geometry Pdf 166346 | Sub Riem Notes
lecture notes on sub riemannian geometry from the lie group viewpoint by enrico le donne http enrico ledonne googlepages com version of february 2021 contents 0 abrief introduction 1 0 ...

icon picture PDF Filetype PDF | Posted on 24 Jan 2023 | 2 years ago
Partial capture of text on file.
                         Lecture notes on
                     sub-Riemannian geometry
                          from the Lie group viewpoint
                             by Enrico Le Donne.
                         http://enrico.ledonne.googlepages.com/
                            Version of February 2021
                             Contents
                             0 Abrief introduction*                                                                                        1
                                0.1   About these lecture notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           1
                                0.2   What sub-Riemannian geometry is . . . . . . . . . . . . . . . . . . . . . . . . . . . .               1
                                0.3   Structure of these lecture notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          2
                                0.4   Sub-Riemannian geometries as models . . . . . . . . . . . . . . . . . . . . . . . . . .               5
                             1 The main example: the Heisenberg group                                                                     13
                                1.1   An isoperimetric problem on the plane . . . . . . . . . . . . . . . . . . . . . . . . . .           13
                                1.2   The contact-geometry formulation of the problem . . . . . . . . . . . . . . . . . . . .             14
                                1.3   The Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          17
                                1.4   The subRiemannian Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . .              20
                                1.5   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    32
                             2 Areview of metric and differential geometry                                                                 35
                                2.1   Metric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         35
                                2.2   Differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        48
                                2.3   Length structures for Finsler manifolds . . . . . . . . . . . . . . . . . . . . . . . . . .         51
                                2.4   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    54
                             3 The general theory of Carnot-Carath´eodory spaces                                                          57
                                3.1   The definition of Carnot-Carath´eodory spaces . . . . . . . . . . . . . . . . . . . . . .            57
                                3.2   Chow’s Theorem and existence of geodesics . . . . . . . . . . . . . . . . . . . . . . .             62
                                3.3   Equiregular Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         67
                                3.4   Ball-Box Theorem and Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . .               68
                                3.5   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    72
                                                                                    i
                                                                          0- CONTENTS                           May 16, 2021
               4 Areview of Lie groups                                                                                      75
                  4.1   Lie groups and their Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         75
                  4.2   Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         78
                  4.3   The General Linear Group, its Lie algebra, and its exponential map              . . . . . . . . .   81
                  4.4   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    84
               5 SubFinsler Lie groups                                                                                      89
                  5.1   Left-invariant polarizations on Lie groups . . . . . . . . . . . . . . . . . . . . . . . .          89
                  5.2   SubRiemannian extrema on subRiemannian groups . . . . . . . . . . . . . . . . . . .                 91
                  5.3   Regular abnormal extremals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          97
               6 Nilpotent Lie groups and Carnot groups                                                                     99
                  6.1   Stratified Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       111
                  6.2   Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      115
                  6.3   Adeeper study of Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           119
                  6.4   Exercises    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   129
               7 Limits of Riemannian and subRiemannian manifolds                                                         133
                  7.1   Limits of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      133
                  7.2   Limits of Carnot-Carath´eodory distances . . . . . . . . . . . . . . . . . . . . . . . . .         135
                  7.3   Asymptotic cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       140
                  7.4   Tangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       146
                  7.5   Ametric characterization of Carnot groups . . . . . . . . . . . . . . . . . . . . . . .            152
               8 Visual boundaries of hyperbolic spaces*                                                                  155
                  8.1   CAT(-1) spaces and visual boundary* . . . . . . . . . . . . . . . . . . . . . . . . . .            156
                  8.2   Preliminary notions for rank-one symmetric spaces . . . . . . . . . . . . . . . . . . .            157
                  8.3   The K-hyperbolic n-space KHn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           161
                  8.4   The K-Heisenberg groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          162
                  8.5   Isometries of hyperbolic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        164
                  8.6   Hyperbolic spaces as semidirect products          . . . . . . . . . . . . . . . . . . . . . . . .  170
                  8.7   The visual distance for K-hyperbolic spaces . . . . . . . . . . . . . . . . . . . . . . .          183
                  8.8   The octonionic hyperbolic plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        187
                                     ii
The words contained in this file might help you see if this file matches what you are looking for:

...Lecture notes on sub riemannian geometry from the lie group viewpoint by enrico le donne http ledonne googlepages com version of february contents abrief introduction about these what is structure geometries as models main example heisenberg an isoperimetric problem plane contact formulation subriemannian exercises areview metric and dierential length structures for finsler manifolds general theory carnot carath eodory spaces denition chow s theorem existence geodesics equiregular distributions ball box hausdor dimension i may groups their algebras exponential map linear its algebra subfinsler left invariant polarizations extrema regular abnormal extremals nilpotent stratied adeeper study limits distances asymptotic cones tangent ametric characterization visual boundaries hyperbolic cat boundary preliminary notions rank one symmetric k n space khn isometries semidirect products distance octonionic ii...

no reviews yet
Please Login to review.