jagomart
digital resources
picture1_Dynamics Pdf 158030 | Lecture3 Jen Rigidbodies


 167x       Filetype PDF       File size 0.67 MB       Source: www.brown.edu


File: Dynamics Pdf 158030 | Lecture3 Jen Rigidbodies
lecture 3 rigid body dynamics kinematics example rolling no slip rotational equation of motion mass moment of inertia solving rigid body dynamics problems dynamics example pulley with mass thursday april ...

icon picture PDF Filetype PDF | Posted on 19 Jan 2023 | 2 years ago
Partial capture of text on file.
          Lecture 3: rigid body dynamics
               kinematics example: rolling no slip
            •
               rotational equation of motion
            •
               mass moment of inertia
            •
               solving rigid body dynamics problems
            •
               dynamics example: pulley with mass
            •
 Thursday, April 11, 13
            Rigid Body Kinematics
         v =v +(!⇥r                        )
           A        B                A/B
         a =a +(↵⇥r                        )+(!⇥(!⇥r                     ))
           A        B                A/B                          A/B
 • Useful Shortcuts for 2D planar motion ↵ = ↵k
                                                              ! =!k
                                                              r = rxi +ryj
                    !⇥r=ry!i+rx!j
                      ↵⇥r=ry↵i+rx↵j
          !⇥(!⇥r)=r !2ir !2j
                                          x               y
 Thursday, April 11, 13
             Rigid Body Dynamics
    Linear Motion:                                 sum of the forces is the 
             F=ma=d(mv)                            time rate of change of 
                               dt                  linear momentum
    Works for particles - and also works for rigid bodies if 
    the acceleration is at the center of mass!
                              F=maG
 Thursday, April 11, 13
             Rigid Body Dynamics
    Rotational Motion:
                        d(HG)            ˙         sum of the moments is 
            M =                     =H
                G           dt            G        the time rate of change 
                                                   of angular momentum
                about the center of mass
 Thursday, April 11, 13
The words contained in this file might help you see if this file matches what you are looking for:

...Lecture rigid body dynamics kinematics example rolling no slip rotational equation of motion mass moment inertia solving problems pulley with thursday april v r a b useful shortcuts for d planar k rxi ryj ry i rx j ir x y linear sum the forces is f ma mv time rate change dt momentum works particles and also bodies if acceleration at center mag hg moments m h g angular about...

no reviews yet
Please Login to review.