166x Filetype PDF File size 0.21 MB Source: kumarsir34.files.wordpress.com
CHAPTER – 4: DETERMINANTS MARKS WEIGHTAGE – 10 marks NCERT Important Questions & Answers 1. If x 2 6 2 , then find the value of x. 18 x 18 6 Ans: Given that x 2 6 2 18 x 18 6 On expanding both determinants, we get 2 x × x − 18 × 2 = 6 × 6 − 18 × 2 x − 36 = 36 − 36 2 2 x − 36 = 0 x = 36 x = ± 6 a ab abc 2. Prove that 2a 3a2b 4a3b2c a3 3a 6a3b 10a6b3c Ans: Applying operations R → R – 2R and R → R – 3R to the given determinant Δ, we have 2 2 1 3 3 1 a ab abc 0 a 2ab 0 3a 7a3b Now applying R → R – 3R , we get 3 3 2 a ab abc 0 a 2ab 0 0 a Expanding along C , we obtain 1 aa 2ab00a(a20)a(a2)a3 0 a bc a a 3. Prove that b ca b 4abc c c ab Ans: bc a a Let b ca b c c ab Applying R → R – R – R to Δ, we get 1 1 2 3 0 2c 2b b ca b c c ab Expanding along R , we obtain 1 0ca b (2c) b b (2b) b ca c ab c ab c c Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - 2 2 = 2 c (a b + b – bc) – 2 b (b c – c – ac) 2 2 2 2 = 2 abc + 2 cb – 2 bc – 2 b c + 2 bc + 2abc = 4 abc x x2 1x3 4. If x, y, z are different and y y2 1y3 0then show that 1 + xyz = 0 z z2 1z3 Ans: x x2 1x3 We have y y2 1y3 z z2 1z3 Now, we know that If some or all elements of a row or column of a determinant are expressed as sum of two (or more) terms, then the determinant can be expressed as sum of two (or more) determinants. x x2 1 x x2 x3 y y2 1 y y2 y3 z z2 1 z z2 z3 1 x x2 1 x x2 (1)2 1 y y2 xyz 1 y y2 (Using C ↔C and then C ↔ C ) 3 2 1 2 1 z z2 1 z z2 1 x x2 (1xyz)1 y y2 1 z z2 1 x x2 (1xyz) 0 yx y2x2 (Using R →R –R and R → R –R ) 2 2 1 3 3 1 0 z x z2 x2 Taking out common factor (y – x) from R and (z – x) from R , we get 2 3 1 x x2 (1xyz)(yx)(zx) 0 1 yx 0 1 zx = (1 + xyz) (y – x) (z – x) (z – y) (on expanding along C ) 1 Since Δ = 0 and x, y, z are all different, i.e., x – y ≠ 0, y – z ≠ 0, z – x ≠ 0, we get 1 + xyz = 0 1a 1 1 1 1 1 5. Show that 1 1b 1 abc1 abcbccaab a b c 1 1 1c Ans: 1a 1 1 LHS 1 1b 1 1 1 1c Taking out factors a,b,c common from R , R and R , we get 1 2 3 Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 2 - 1 1 1 1 a a a abc 1 11 1 b b b 1 1 11 c c c Applying R → R + R + R , we have 1 1 2 3 1111 1111 1111 a b c a b c a b c abc 1 11 1 b b b 1 1 11 c c c Now applying C → C – C , C → C – C , we get 2 2 1 3 3 1 1 0 0 1 1 1 1 abc1 1 0 a b c b 1 0 1 c 1 1 1 abc1 1(10) a b c 1 1 1 abc1 abcbccaab= RHS a b c 6. Using the property of determinants and without expanding, prove that bc qr yz a p x ca rp zx 2b q y ab pq xy c r z Ans: bc qr yz LHS ca r p zx ab pq xy bc ca ab qr rp pq (interchange row and column) yz zx xy bc ca 2c qr rp 2r [usingC → C − (C + C )] 3 3 1 2 yz zx 2z bc ca c (2) qr r p r (taking ‘–2’ common from C ) 3 yz zx z Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 3 - b a c (2) q p r (using C → C – C and C → C − C ) 1 1 3 2 2 3 y x z a b c 2 p q r (using x y z C ↔ C ) 1 2 a p x 2b q y RHS (interchange row and column) c r z 7. Using the property of determinants and without expanding, prove that a2 ab ac ba b2 bc 4a2b2c2 ca cb c2 Ans: a2 ab ac a b c LHS ba b2 bc abc a b c [taking out factors a from R , b from R and c from 1 2 ca cb c2 a b c R] 3 1 1 1 (abc)(abc) 1 1 1 (taking out factors a from C , b from C and c from C ) 1 2 3 1 1 1 0 0 2 a2b2c2 0 2 2 (using R → R + R and R → R − R ) 1 1 2 2 2 3 1 1 1 Expanding corresponding to first row R1, we get a2b2c220 2 1 1 a2b2c22(02)4a2b2c2 RHS 8. Using the property of determinants and without expanding, prove that 1 a a2 1 b b2 (ab)(bc)(ca) 1 c c2 Ans: 1 a a2 LHS 1 b b2 1 c c2 Applying R R R and R R R , we get 1 1 3 2 2 3 0 ac a2c2 0 ac (ac)(ac) 0 bc b2c2 0 bc (bc)(bc) 1 c c2 1 c c2 Taking common factors (a − c) and (b − c) from R1 and R2 respectively, we get Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 4 -
no reviews yet
Please Login to review.